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Abstract

Chern—Simons (CS) gauge theories in three dimensions and the Poisson sigma model (PSM) in two
dimensions are examples of the same theory, if their field equations are interpreted as morphisms of
Lie algebroids and their symmetries (on-shell) as homotopies of such morphisms. We point out that
the (off-shell) gauge symmetries of the PSM in the literature are not globally well defined for non-
parallelizable Poisson manifolds and propose a covariant definition of the off-shell gauge symmetries
as left action of some finite-dimensional Lie algebroid.

Our approach allows us to avoid complications arising in the infinite-dimensional super-geometry
of the BV- and AKSZ-formalism. This preprint is a starting point in a series of papers meant to
introduce Yang—Mills type gauge theories of Lie algebroids, which include the standard YM theory,
gerbes, and the PSM.
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1. Introduction

Yang—Mills (YM) gauge theories are an important ingredient in our present-day un-
derstanding of fundamental forces. On the mathematical side they are governed by a
principal fiber bundler : P — X, where X' is our space—time manifold. Here any fiber
7 x), x € ¥, is aG-torsor, whereG is the Lie structure group d?. In the simplest case
whenP is a trivial bundle,P = X x G, & is the projection to the first factor, and tke
action onP is defined by right multiplication in the second factor. For the standard model
of elementary particle physio§ = SU(3) x SU(2) x U(1), but also other, “larger” Lie
groups come into mind in the context of a further unification of fundamental interactions.

Gauge bosons correspond to connectionB,imatter fields are sections in associated
fiber bundles (usually vector bundles), and gauge symmetries are the vertical automorphisms
Auty(P) of P. In the case of a trivial bundle the gauge bosons aregiystiued 1-forms
A = A'b; on ¥, whereg is the Lie algebra of the gauge or structure gr@p; is some
basising,andl = 1, ..., dimg. Sections of vector bundles then correspond to vector-valued
functions (or spinors) o’ and the infinite-dimensional group of gauge transformations
Auty(P) becomes isomorphic to Map( G). Thus infinitesimally gauge symmetries are
parameterized by = /b, € Map(Z, g) and one has. A’ = de’ + C/ A’ €K, whereC/
denote the structure constants of the Lie alggbra

All fundamental interactions fit into this framework except for gravity. Even though it is
possible to cast general relativity in the language of a gauge theory of connd2iicihe
gauge symmetries contain the diffeomorphism&ofThe Lie algebra of Diff£) consists
of vector fields on¥. This has to be contrasted to elements of AB) = Lie(Aut,(P)),
which always have a trivial projection tBX. On the level of a Hamiltonian formulation
of the theory this usually leads to structure functions in the algebra of constraints, whereas
for YM gauge theories the algebra of constraints is governed by the structure constants
C§K (cf., e.g.,[10] for details). Structure functions of first class constraints are a typical
feature of a formulation of a theory with an open algebra of gauge symmetries, where the
commutator of infinitesimal gauge symmetries closes only on-shell, i.e. upon use of the
field equations. In YM theories, on the other hand, gauge symmetries always form a closed
algebra. In a way, within YM theories many considerations of gauge symmetries can be
reduced to a finite-dimensional group, the structure gr@ypvhereas for gravitational
theories all of the infinite-dimensional group of gauge symmetries seems unavoidable.
This may be regarded as maybe one of the main obstacles in a successful quantization of
gravity along the lines of YM gauge theories.

It may be an important step to broaden the framework of YM gauge theories in such a
way that also some gauge theories with an open algebra of gauge transformations fit into
it, while still many considerations can be reduced to a purely finite-dimensional setting. In
[25] (cf. also[26]) a particular program in this direction has been proposed. Essentially, the
structural Lie groups of a YM theory is replaced by (or generalized to) a so-called Lie
groupoid; correspondingly, the Lie algehyayeneralizes to a so-called Lie algebrdid

1 Among others a Lie algebroid is a vector bundle> M carrying a Lie bracket for its sections; fdta point
one obtains a Lie algebra, while = TM with the Lie—Jacobi bracket for vector fields bhis another prominent
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The present paper is the first one in a series of papers devoted to this subject and aims at
providing part of the mathematical basis for the others.

From some other perspective our goal is to provide a better understanding and definition
of “non-linear gauge theories”, as they have been suggested already quite some time ago
by van Nieuwenhuizen and collaborators, cf., €[83]. Heuristically, in such a theory
one wants to replace the structure constafts of a standard YM theory by some field-
dependent quantities, which then generically will lead to a theory with an open algebra
of gauge symmetries, due to the transformatiol€st In our approachCﬂK will be the
structure functions of a Lie algebrofd — M. M then serves as a target space for a sigma
model so that the ma — M locally corresponds to a set of scalar fieki€x) and the
coefficientsC/, depend on these fields in general; from a physical language these fields
can be some kind of Higgs fields or they can turn out to be just some auxiliary fields that
do not carry any physical degrees of freedom after integrating them out appropriately. In
addition to them locally one still has a set of 1-form gauge fiedds

In two space—time dimensions, dili= 2, a prototype of such a non-linear gauge theory
is provided by the Poisson sigma model (PS2B,12] It is worth mentioning here that
in this particular space—time dimension, essentially all possible YM gauge theories and 2D
gravity theories find a unifying formulation as particular PSMs (cf., ¢2{.,13). In all
of our work we want to use the PSM as a kind of main guiding example for developing a
more general theory. In particular, in the present first paper we show how the field equations
and the gauge symmetries of this model are related to Lie algebroids. Focusing on the case
corresponding to a trivial principal bundle, the field content of the PSM, locally described
by a set of couplesX, A;)?_, of scalar and 1-form fields, respectively, corresponds to
vector bundle morphismg: TX — T*M. SinceM is a Poisson manifold, both the source
and target vector bundle carry Lie algebroid structures. The content of the field equations
will then be shown to be equivalent to requiripgo respect the Lie algebroid structures,

i.e. to be Lie algebroid morphisms.

Whereas for Lie algebras it is very straightforward to define the notion of a morphism,
for Lie algebroids the situation is somewhat more intricate. After setting the notation and
collecting some background materialSection 2in Section 3everal formulations of such
a morphism will be mentioned and related to one another. Essentially one needs to dualize
the mapg, requiring it to be an appropriate chain map. However, in our final formulation,
using the graph o, this can also be circumvented.

An important observation in this context is that also YM-type gauge theories such as
the Chern—Simons theory fit into that framework. Flatness of a connedtied’b; in a
trivial principal fiber bundle is tantamount to the condition that the corresponding map from
TY — g, &£ — Al(£)b;,isaLie algebroid morphism. Correspondingly, in our investigations
we will replaceT*M of the PSM by an arbitrary Lie algebroif,. In fact, for means of
generality we will also generaliZzEX to an arbitrary Lie algebroi&, although the main
example of physical interest may still be provided by the tangent bundle of space—time.

For the formulation oy : E; — E> in terms of the graph map one uses the fact that the
setE1 x E2 can be given the structure of a Lie algebrd@id= E1 B E> itself (details of

example. We will recall the notion of a Lie algebroid in the subsequent section; for further background material
on Lie algebroids and Lie groupoids we refer to the monog8phnd references therein.
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this will be provided already iBection 2. It will then be shown tha is a morphism of
Lie algebroids iff¢9@ : E; — E is a morphism. By construction, the base map%f is
an embedding, permitting to work withP"@-related sections instead of with the dual map.

In Section 4finally we turn to the issue of gauge symmetries. We first point out that
the locally defined infinitesimal gauge symmetries usually used in the PSM are in general
not well-defined globally. They make sense only if the target Poisson mamifaan be
covered by a single chart, or if it carries some flat connection, implicit but not transparent
in the usual formulas (Eq¢15) and (16). This is somewhat remarkable in view of the
already relatively large, and in part also mathematical literature on the PSM; in part this
may be related to the fact thatin many physical examples of the PSM such as 2D YM and/or
2D gravity models a flat targe = R” is used (cf., e.g][13,27,9), which moreover also
underlies the Kontsevich formu[44], resulting from the perturbative quantization of the
PSMT4].

In Section 4we present one possible way of curing this deficiency, simultaneously
generalizing the gauge symmetries also to the context of arbitrary Lie algebroids. This is
done in such a way that for the particular cé&e= g andE; := TX one indeed re-obtains
the usual YM gauge transformations. Moreover, also in the general case, we will be able
to trace back everything to purely finite-dimensional terms. Employing the picture with the
graph,¢¥?: E; — E, the infinitesimal gauge symmetries (and also what corresponds to
infinitesimal diffeomorphisms aof’) result from particular, structure preserving infinitesimal
automorphisms ok, acting from the left o9 (or from the right in the dualized picture
@Y% I'(AE*) — I'(A EY)), and generated by particular section&afa a Lie algebroid
generalization of the Lie derivative. As a byproduct we find that the gauge symmetries
formulated in this way close even off-shell. But also if one needs to calculate, e.g. the
commutator of the original symmetries of the PSM fdr= R" the present approach
provides a significant technical advance.

Although this approach may be related also to an infinite-dimensional Lie algebobid
infinitesimal gauge transformatiofts9], the base manifold of which are mapg — M
(or, more generally, maps from the basd@fto the base of'»), one can consistently—and
with conceptual profit—truncat&'(£) to the space of sections in the finite-dimensional
algebroidE. For the PSM a similar statement applies to its AKSZ-formulaig6], which
yields in a most transparent way the BV-form of the PSM.

As an alternative, one may also employ a connection in the target Lie algeBsoid
for providing another possible global definition of the gauge symmetries. While some
elementary formulas in this direction will be displayed at the en&®&dtion 4 a more
abstract analysis along the lines of the present paper can be found in another, accompanying
paperf17].

Both definitions of gauge symmetries can be made to agree for the PSM®BR",
as well as certainly in the YM-case. Also they always agree globally upon use of the field
equations, i.e. on-shell. Already the standard gauge symmetries of the PSM have a good
global on-shell meaning, as an infinitesimal homotopy of Lie algebroids. Correspondingly,
a homotopy of Lie algebroids defines an integrated version of the on-shell gauge symmetries
(Section 3. Globally and off-shell, however, the gauge symmetries defined viakie
derivative and those defined by means of a connedfi@m E; are different; in particular
also the latter do not close off-shell, their commutator containing contributions of
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The formulation in the present paper as well aglidi] is put in such a form that a
generalization to non-trivial fibrations is rather straightforward. Essenialg a manifold,
is then not just a direct produél; x E», but a particular fiber bundle over the basefaf
In order to not overload the presentation, we found it useful to present this generalization
in another separate wofk8]. All three papers together then are meant to provide, among
others, a basic mathematical framework for the definition of Lie algebroid Yang—Mills type
gauge theories.

Some particular action functionals for this kind of gauge theories are preser§].in
They generalize usual YM gauge theories in arbitrary dimensions at well as, e.g.
the Chern-Simons gauge theory in three and the PSM in two space—time dimensions. The
relation of the PSM to 2D gravity theories, furthermore, is extended to the definition of
topological gravity theories in arbitrary space—time dimension2&}. (Maybe another
sentence expressing the expectation that such theories will/may become “interesting” for
mathematics as well for physics—or maybe just end without that.)

2. Preliminaries

In this section we mainly set the notation and recall some background material needed
later on. We start with the Poisson sigma model (P$22)12], presenting a slightly more
abstract definition of its action function& Sis a functional of the vector bundle mor-
phismse : TY — T*M, whereX is a two-dimensional manifold, called the world-sheet,
andM some Poisson manifold. We denote the Poisson bivect®r by (A2TM), {f. g} =
(P,df A dg); in local coordinatest’ on M, P = (1/2)P¥(X)3; A 8; = (X', X/} = PY,
and

[P, Plschouten= 'P{{;Pksf)i NN O = 0, (1)

as a manifestation of the Jacobi identity for the Poisson bracket.

Any morphism¢ : E1 — E» between two vector bundles : E; — M;,i = 1, 2, may
be expressed in different equivalent ways. One of them is by specifying the induced base
mapgo : M1 — M> and, in addition, by providing a sectiévof the bundleE] ® ¢5 E>. If
b;, I =1,...,rank(E2), denotes alocal basis &b andb; the corresponding induced basis
in the pullback bundi@}E>, and if E; = TX, thenA = A’ ® b;, whereA! € 21(X) =
I(T*X) (possibly also defined locally of only, however).

Later on we will also need the grapH™of the above map as well as its trivial extension

Eg,
¢9%: Ey — E:= E1B E>, e1 > e1 B gler), (2)
Ey.E— E, Ep = ¢920 py. (3)
Herer : E — M, the exterior sum of; and E», is a vector bundle oveVl := My x M>

defined as grE1 @ pr; E2, where py: M — M,; is the projection to théth factor of the
Cartesian product, angh is the canonical projection bundle morphigin— E1 covering
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pry: M — Mz:

E ™ B

T 3 m (4)
M5 oM
Alternatively, the vector bundle morphism induces a map® : I (®1’ E;) —
I'(®PE}). For p=0 it is given by the pullback of functionsC>(My) > f
¢of € C*(M1), while for p =1, ®(up) for up € I'(E3) is defined by(®(u2), s1)|x =
(U2lgo(x)> D(s11x))Vx € M1 andVsy € I'(E1). In the particular case df; = 7X mentioned
previously, withb! denoting the local basis if} dual tob,, one hasp(b’) = A’. The ex-
tension to arbitrary is canonical now. Mostly we will use only the restriction of the above
map@ to the antisymmetric subspat§ A’ E7) =: QQZ(MZ) (the space of>-forms) only,
which we denote by the same letter.
The above mag can be extended also to &lp-tensors, and we will denote this extension

by
o r <<§E§ éEz) - T <(§>EI é(d)o)*Ez) : (5)

where on the first factap' acts asb above and oit» it is defined ag’(E2) > s2 — s2 0 ¢p,
viewed as a section of the pullback bundig)( E2. With this map the above sectiohe
E7 ® ¢5E2 is nothing but the image of the canonical identity secian E5 ® Ez, A =
@'(5) (in local termss = b’ ® b; and®' (b;) = ;).

In the particular cas&, = T*M and E1 = TX (and only in this case!) the map can
be extended to alk,-tensors also in another way, which we denote by

+
o : r(é ™ & T*M) - r(”®q T*E). ©6)

Here 1-forms orM, corresponding tp = 0, ¢ = 1, are mapped by the pullbagg to
1-forms on¥—and, as before, this map is extended canonically to all possible choices for
p andq.

Such asp permits the dual formulation in terms @f : 27, (M2) — 27, (M1), also the
maps(2) and (3)induce reverse maps:

I QU(M) — 27 (My), Ep: f(M) — 2L.(M). (7)

Note that due to the isomorphi@pﬂ:k le(Ml) ® .Q‘gz(Mz) = SZ"‘E(M), where multi-
plication is defined according taf ® w2) A (0] ® w)) = (—=1)9 (w1 A ) ® (w2 A ),

there is a natural bigrading f&forms; if we want to stress the bigrading, we wi2é 7 (M),

while kin .Q’fE(M) denotes the total degree, which is the sum of the two individual degrees
on E1 andE». The above map) are related ta in the following way:

- ideo
P9 25 (M) = 2, (M1) @ 2, (M2) = $25, (M1) ® 27, (M1)

5 2ir(my), 8)
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s @92 P ~ ,0
B obi(m) = QpH(My) —> 251 (M1) @ 29, (Mo) = @57 °(M),  (9)

where Py : 21, (M1) > 01—~ 01 ® 1 € 2 (M1) ® 29 (M2) C 24(M) is the map in-
duced by the bundle morphism : E — E1. So,f® preserves only the total degree, but
not the bigrading.

By definition, p1 o ¢9"@ = idg,, which translates into the dual relati@®@o P; = id.
For£® = P; o 9@ we then obtairf @ o P; = Py, implying that® & is a projector to the
image ofPy (i.e. on2;(M) one had ®” = E® and imf® = im Py).

Uszing the mapd*, we give a concise global definition of the action functional of the
PSM:

S[¢] = /E Alt 9*(5 + P), (10)

where§ is the canonical identity section in T 7*M and Alt denotes the antisym-
metrization. In local coordinate¥’ on M and with the induced local basis ~ b; and
dx’ ~ b’ in TM and T*M = E», respectively, one has = 9; ® dX’ and Alt®(s) =
Alt(A; ® dX’) = A; A dX' (whereA; ~ A’, as introduced above, aid = X/(x) denotes
the scalar field corresponding to the map: X — M, just expressed in local coordi-
nates).P, on the other hand, is the Poisson tensoMyrand for the second term simply
Alt @*(P) = &(P) = (1/2)P7 A; A A;. Thusinthe more familiar and for practical purposes
most useful local descriptiogtakes the form

. 1 ..
S = S[¢o, A]:/ Ai AdX 4 SPIAIA A (11)
b

For completeness we also mention another possible covariant presentation of the action
functional. For this purpose we first rewriieas (1/2)(P, § A §), then the second term in

(10), which may be also written a®'(P), becomes (12)(®'(P), A A A) with AA A €

2%z, A2¢3T*M). Moreover, §o)« : TX — TM is a vector bundle morphism covering

¢o. Thus, according to the above discussion, it induces a sectii Bf® ¢5TM, which

we denote suggestively byg. Clearly it can be contracted with € I'(T* X' ® ¢{T*M).

In this way we obtain

S=/(AAd¢0)+%(’Po¢>0,A/\A). (12)
X

Concerning the field equations and the symmetries of the PSM action functional,
we let it suffice here to just recall the local basis expressions—anyway, much to fol-
low will be devoted to a more abstract and covariant formulation of precisely these two
issues.

The field equations of the action functior{all) are

88

22 dxi 4 P o
ia = dx' + PY(X)A; =0, (13)

2 In Section 4his formula is rewritten in two further quite similar fashions, cf. E#), which will be explained
only there to not overload the presentation here.



M. Bojowald et al. / Journal of Geometry and Physics 54 (2005) 400—-426 407

88
7 = 04i + IPH(X)Ac A A =0. (14)

The gauge symmetries are generated by
8 X =Plie;, (15)
8eA; = de; + P, Ajey, (16)

wheree = ¢;,d X' € I'(¢5T* M) may be chosen arbitrarily. The obvious DXff invariance
of the action functiona$, e.g., can be generated by mean§l&f) and (16with the choice
€ = (v, A;) with v € I'(TX) being the infinitesimal generator of a diffeomorphism in the
above group. For further remarks in the context of symmetries, somewhat complementary
to what will follow in the present paper, we also refer to Section 2 [Bpbf

We now recall the definition of a Lie algebroid. First of &ll,= 7*M, M Poisson, is a
particular example, and many things become more transparent when they are formulated in
this somewhat more general context and language. Moreover, although the action functional
S as introduced above, is quite particular to morphisms from oy~ 7*M, whereX
is two-dimensional an®l Poisson, the field equations and symmetries generalize easily
to arbitrary Lie algebroid morphismg: E1 — E». Moreover, we believe that the corre-
sponding considerations are of interest in this more general context as well. Finally, we
remark that it is even possible to construct action functionals for this more general setting,
too, but this is not subject of the present paper.

A Lie algebroid over a base manifoM is a vector bundI& with a Lie algebra structure
[, -] on the space of sectionS(E) together with a bundle map: E — TM, called the
anchor, which by definition governs the following Leibniz rule: for any’ € I'(E), f €
e (M),

[s. £5'1 = fls. 5T+ ps(f)s, 17

wherep. denotes the induced map of sections froti(E) to I'(TM). It is not difficult to
see thatp. provides a representation of (E), [+, -]) in the Lie algebra of vector fields,
i.e. that oy, py] = pps,¢7- We briefly recall the list of standard examples of Lie algebroids.
Lie algebrasM being a point, or bundles of Lie algebras, o= 0. The tangent bundle,
E =TM, p =id. And, finally, E = T*M, M Poisson, wherp = P*, p(a;dX") = o; P/,
and the bracket [(dg] := d{f, g} between exact 1-forms is extended to all 1-forms by
means of17).

There is also an equivalent definition of a Lie algebrdid &/, p, [, -]) as the differential
graded algebral{(A" E*) A £d), wherefd is defined by € I'(APE*), s; € I'(E))

Fdar(st, ..., spr1) = Y (=1 (sl ... 5. .)

+ ) D (s ] B S, (18)

i<j

which is a generalization of the Cartan formula for the exterior derivative in the standard
Lie algebroid TM.
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An anchor map of a Lie algebrold provides a representation 6{E) in C>°(M). One
can lift this action to a representation ii{A° E*). Taking any sectios of E, we associate
a Lie derivative E-Lie derivativg £L alongs by generalization of Cartan’s magic formula

ELs = [Eda ls] = Edls + lsEda (19)

wherer,; denotes contraction withandd is defined in(18). It is now straightforward to
prove that indeed one has a representation, i.e. fifat fL,] = £Lj; ;1 holds true? (In
general, for operatorg;, V» of some fixed degree in a graded vector space, we define the
graded commutator bracket according¥a,[V»] := Vi o Vo — (—1)4€9V1de0V2y), o, In
the abovefd, i, andfL, are of degree-1, —1, and 0, respectively.)

For later use we will need some of the above formulas in more explicit formlL ¢ })
be a local coordinate chatt; be a frame of;; overU, andb! its dual frame inE7;. Then
with p(by) = p; =: p;ai and py, by] =: ijb]( one finds

Edx' = bl pi(X), Edp!" = —1Ch ()b A DK, (20)
Epoxt = s'pf, ELsb! = py(s"b? + Cl(X)b7sK. (21)

In the Poisson casé; ~ dX*, b’ ~ 3, pj ~ P, andCl, ~ Pk ;.

Some words about conventions may be in place: If there are two Lie algebroids involved,
E; — M;,i =1, 2, such as already above in the context of a bundlegnap; — E», we
will mostly mark objects of the respective algebroid with the corresponding index. For
example,sz, s, € I'(E2) for sections of the target bundle. Similarly, for the respective
Lie algebroid exterior derivatives, we will use the abbreviatibnd =: d;. However, to
simplify notation we will make exceptions from the above rule for what concerns, e.qg. local
coordinates and frames#, b, denote coordinates and frame in the souttgand E,
respectively, whileX’ andb; do so for the target. Correspondingly, thefy(C}) denote
structure functions itE2(E1), and likewise for connection coefficients, etc. Depending on
the context, furthermorel’ may just denote coordinates ofp or, as, e.g. already if1.3),
the collection of functions on (parts aff; corresponding to the base map: M1 — Mo;
otherwise we would have to writg(X’) = (¢o)* X', in the previously introduced notation,
where, moreover@d and (o)* are the canonical restrictions of the respective maps to
functions defined on the neighborhobdc M» on which the coordinateX’ are defined.
Likewise dX’ may denote a basis of local 1-forms 1ti M or its pullback, which more
carefully we would have to write agg)* dX’ = @* dX’. On the other hand, for the induced
basis in ¢o)*T*M for clarity we usedX’ := &'(dX’) = dX’ o ¢. In generalization of
the 1-form fieldsA; of the PSM, we have the (locally defined) setmf-1-forms Al =
Al ® b* = @(b'); they combine into (the globally defined)= &' (b’ @ b)) = A’ @b, €
I'(E% ® ¢3E2), which in the PSM case becomas= A; ® dX'.

Finally we mentionthati; — M;,i = 1, 2, are two Lie algebroids, then aléb— M,
whereE = E1 H E> andM = M1 x M2 as introduced above, can be endowed canonically
with a Lie algebroid structure (generalizing the direct sum of two Lie algebras). For this
purpose we use the isomorphisty (M) = 2, (M1) ® 2}, (M2), and definé'd := £d; +

3 This is done most easily by noting that the operatar[,, Zd]] on 25(M)is C*°(M)-linear and agrees with
U[s,¢], Cf. also[16,15]
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Ed,, wherefd; = d; ® id and, similarly,fdy = (—1)°tid ® do, with &1 being the grading
operator acting as multiplication kgyon le(Ml). By construction, £d;)2 = 0, and, due
to the grading operatar, alsofd; and£d, anticommute, so that indeefid)? = 0.

3. Morphisms and field equations

Assume thatt1 — My and E; — Mo are Lie algebroids with the anchopg and p»,
respectively and thap : E1 — E> is a vector bundle morphism. For the particular case
E1=TX andE; = T*M, M Poissong reproduces the content of the fields in the PSM; it
is worthwhile, however, to discuss the more general situatiolr; — E> (cf. also[28,26]
for further motivation for this perspective). In the beginning of the present section we address
the question, under what conditions we may ¢ad morphism of Lie algebroids, as well
as how, in the particular case of the PSM, this is related to its field equations. On our way
we will prove also some helpful reformulations of the notion of Lie algebroid morphisms
in terms of the maps introduced in the previous section.

For M1 = M> = {pt} the above Lie algebroids simply become Lie algebras. By defini-
tion,¢ : g; — gpisamorphism of Lie algebrasii®fs1), ¢(s7)] — ¢([s1, s7]) = 0Vs1, 5] €
g1. But, in general a vector bundle morphigm E1 — E> does not induce a map of sec-
tions of those bundles (except if, say, the induced base ¢papfy, — M is a diffeo-
morphism). Instead, as with vector fields and the tangentgnagd a mapy : M1 — M
(corresponding to the example of standard Lie algebréids- TM; with ¢ = ¢,), one
may speak of relation of sections only. Sections I'(E;) are calledp-related s; ~¢ s
iff ¢ os1 =520 ¢o. Following[11] we also say that; € I'(E1) is ¢-projectable if it isp-
related to some, € I'(E2). The most straightforward attempt to generalize the morphism
of Lie algebras would then be

Definition 1. Let¢ be a vector bundle morphisgn: E1 — E> between two Lie algebroids
(Ei, M;, pi, [-, 1), i = 1, 2. We say thaF; and E; are¢-related,E; ~¢ E iff

p20 ¢ = (¢0)« © p1, (22)

¢ / ¢ /7 /7 ¢ / /

§1~ 52,87 ~ 55 = [s1, 5911 ~ [s2. 85]2  Vsi, s € T'(E;p), (23)
where ¢o)« : TM1 — TM> denotes the push forward of tangent vectors induceghby
In general, howevekp-relation of Lie algebroids is too weak a notion to deserve being
called also a morphism of Lie algebroids. We thus take recourse to a dual perspective, using

the map® introduced in the previous section (in the example of standard Lie algebroids
E; = TM; and¢ = ¢,, the map® is just the pull back of differential forms):

Definition 2. A vector bundle morphisny : E1 — E2 between two Lie algebroids
(Ei, M, pi, [-, ;) = (I"'(AE}) A d;),i =1, 2, is a morphism of Lie algebroids iff the in-
duced mapp : I'(AE%) — I'(AE7) is a chain map:

d1® — ddp=0. (24)
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In other wordsg is a morphism iff
Fy 1 Q25,(M2) — 241 (My), Fy = d1® — ®dy (25)

vanishes.
Before continuation, we show thBefinition 2indeed serves the purpose of giving a
mathematical meaning to the field equations of the PSM.

Proposition 1. A bundle magp betweerf’Y andT* M is a solution of the PSM equations
(13)and(14)iff @ is a morphism of Lie algebroids

Proof. Letus choose alocal chait ¢ M supplied with coordinate functio’}, induc-
ing the local framey; of TU. Applying d® — @3 to X’ andd;, we immediately obtain the
first and the second field equatiof3) and (14)respectively. Here d is the usual de Rham
operator onX' anda is the Lichnerowicz—Poisson differential acting 5iA TM), which

is a particular case of the canonical Lie algebroid differential s determined by the
Poisson structur®. Since both the conditior(d3), (14) and (24are local, this completes
the proof. O

In [11], instead of the above, one finds the following definition:

Definition 3. Let E1, E2 be Lie algebroids on baség,, M> with anchorsp1, p2. Then
a morphism of Lie algebroidg; — E>» is a vector bundle morphism : E1 — E>, ¢o :
My — M> such that Eq(22) holds and such that for arbitrasy, s; € I'(E1) with ¢-
decomposition

¢posi=) ainiogo), ¢osy= ) aiogo) (26)
we have
¢ olse,si] = aidi([ni. nil o go) + Y pa(s1)(@;)(n; © po)
— > pals)(@))(n; o o). (27)

Here {n;}, {n;} are sections oF, anda;, a; functions overM;. Let us mention thaany
sections € I'(E1) hassomep-decomposition (e.g. choose foy;} a (possibly overcomplete)
basis of sections ik>—the definition then may be shown to be also independent of this
choice of basis).

Proposition 2. Definitions 2 and &re equivalent

Proof. As seen by a simple straightforward calculation, applicatio(2dj to functions
yields a dual formulation of22) (just contract the former equation with sections/g).

It remains to show equivalence of the second defining properBeiimition 3to the
application o{24)to sections of?. In other words we need to prove that for ang I"(E%)
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andsy, s7 € I'(E1) with decomposition$26) one has
(a® = D da)u, 51 A 55) = (10 do. Y pals2)(a))r; o o)
— > palsh)(a;)(nj o po) — b o [51. 51]
+ > aid([ni, 1] © o)) (28)

In fact, using(18), we obtain
(d1®(u), s1 A s7) = pa(s1)(Pu, s7) — p157)(Pu, s1) — (Pu, [s1, 51])

= pa(s1) (Z a'; o u, 77’,-)) — pa(sy) (Z ajeolu, Uj))
— (u o ¢o, ¢ o [s1, 51]). (29)
The Leibniz rule for the anchor map actionsef s; gives

(dab(u). 517 53) = (10 go. Y pa(s2)(@}) (0] © o)
= Y 1)@ o go) — g o [sa. 51])

+ ) dipr(s)gu. i) — > dipals)dgiu, n))- (30)
On the other hand,
(@dau, s1 A sh) = aid i (dau, ni A1)

= > ajdipg(p2(n) (u, ny) — p2(n}) . mi))

— (w0 b0, D" aia(lm n)j  go)- (31)

Eq.(22)impliesthatvh € C*°(M>), s € I'(E1), x € M1,0ne hai(s)xp5h = p2(d o si)h.
Hence, taking into account tiedecompositions aof;, s’j, we get

pa(s1)s (. ) = D aido2(ni)u, 1), (32)

and a likewise formula with primed and unprimed quantities exchanged. Thus all additional
contributions in the differenc&l1®u, s1 A s2) — (DPdou, s1 A s/l) vanish, i.e. the last two
terms in(30) cancel against the first two terms(Bl). O

FromDefinition 3it is also obvious that for Lie algebras, correspondingfio= M, =
{ pt}, the chain property24)is equivalent tagp being a morphism in the usual sense. Also,
fromthis version we see thaiff: E1 — E2isamorphism of Lie algebroids, thén andE>
areg-related. Indeed, the condition on the left-hand sid@8jimplies ap-decomposition
(26) with only one termg = 1 andn = s» (and likewise for the primed quantity), in which
case Eq(27)]just reduces to the right-hand side(&8).

However, in general the converse conclusionis nottrue asillustrated, e.g. by the following
example in the context of the PSM (cf. our discussion above and in partiRndposition J):
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Example 1. Let x1, x? be coordinates on the world-sheBt:= R? and letM := R* be
a target manifold supplied with a zero Poisson tensor. Assumeptteaspecified by the
following choice of fieldsA := A; ® dX' with

Aq = dxl, A = x2dx?, Az = dx?, Ag = x2 dx?

andgg, in accordance with the first morphism prop€i2), which is equivalent to the first
set of field equatiofi13), is chosen to map to a single pointi4. This provides @&-relation
of TR? and T*R*, because there is not even a single vector fietth R? that—for this
choice ofp—is ¢-related taanysection of"(T*R*), and thus the condition (ii) iDefinition

1 becomes empty. But this does not satisfy the morphism prof24iysince A; clearly
does not satisfy also the second set of field equatibhswhich would imply that all4;’s
are closed).

Under suitable further conditions it is nevertheless possible to reverse the above mentioned
implication. In the above example the main problem was that the given vector bundle
morphism excludes the existenceanfy projectable section.

Proposition 3 (Higgins and Mackenzigl1]). If the sections of1 which are projectable
with respect to a given vector bundle morphigmE; — E» generate all of"(E1), then
¢-relation implies the morphism property. The assumption holds true in partidfilaris
fiberwise surjective

Proof. According to the assumption amy, s} € I'(E1) decompose a§ = ) a;&;, 57 =
> a;&! such tha;, & are¢-related to some;, n; € I'(E2), respectively. Since obviously
(26) holds true, we should pro 7). By ¢-relationg o [&;, g;.] = [ni, n’j] o ¢o. Using this
relation in the application ap to

[s1, 4] = Y aid([&. &1+ Y pals1)(@)€; — Y pals)(a))é), (33)

we indeed find27).

Finally, if ¢ is fiberwise surjective, there exists an isomorphism betw&esnd kerp &
¢4 E2. Evidently, any section of kef is ¢-related to the zero section &b and all sections
of ¢¢ E2 are generated hy*(I'(E?)); thus all sections of ket @ ¢jE2 = Ej are generated
by projectable sections.[]

Let us notice that since the morphism equati@#) and the proof above are local, the
statement oProposition 3emains unchanged if we replakf with an open neighborhood
of any pointxg € M1. This argument is used in the next proposition.

Proposition 4. Any¢-relation with a base map that is a local immersion is a morphism of
Lie algebroids

Proof. If ¢ : M1 — M> is a local immersion then for any poing € M1 there exists a
coordinate chartl{, X') aroundgo(xo) and an open neighborhodd c M; of xg such that
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#o(V) C U is given by the set of equationg *dmMM1 — ... — xdmMz — g andgpg : V —
¢o(V) is a diffeomorphism.

Now one can show that any section &h{y is projectable with respect to the restriction
of ¢ on (E1)v, i.e. ¢-related to some section ofg)y as a consequence of the following
simple facts:

e The restriction ofp defines a map of sectiod¥(E1)v) = I'((E2)go(v))-
e Any section of E2)4,(v) can be extended as a section B)jy. [

The last statement is of particular interest due to

Proposition 5. ¢ : E1 — E» is a morphism of Lie algebroids iff its grappf'@: Eq —
E = E1 H E3 is a morphism of Lie algebroids

Proof. With (M) = 23 (M1) ® 2,(M2),Ed = Edy + £dp, and @9%w1 ® wp) =
w1 A D(wp) for all w; € 2% (M;) (so thates (1) = degwr = g1) one has

(1992 — PIEG) (1 ® wp) = (—1) 1wy A (1@ — Pda)wy,

which vanishes identically if and only & is a chain map. O

Since the base map @f% is even an embedding, the general notion of Lie alge-
broid rgnorphism can be reduced to the simplified notioeatlation of Lie algebroids,
E1 ~*"E.

Finally, the chain property24) may be reformulated also nicely in terms of operators
living in one and the same bundle. Recall that and£d both act inside2, (M) (cf. Eq.

(7) and end of the previous section); whil@ is of (total) degree 0%d is of degree 1. We
have the following proposition.

Proposition 6. ¢ : E1 — E; is a morphism of Lie algebroids iff the induced operaftar
commutes witfd on Q23 (M), i.e. iff the operator

EFy = [Fd, Eo] (34)
vanishes

Proof. By definition,f® = P; o 92 Since evidentlyfd o P; = Py o d1 holds true, we
obtain

Edfp — E@pFd = Py o (dy @9 — @9"85d),

which concludes the proof due Rroposition 5and the fact thaP; is an injection. O

Maybe some warning is in place. The above notion of a morphism, in any of its formula-
tions, applied to the cotangent bundle of two Poisson manifolds, mimtepincide with a
Poisson morphism. In contrast, a Poisson map, i.e. aggagM1, P1) — (M2, P2) with
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(60)+ P1lx = Pa2lgo(x) ¥x € M1, gives rise only to a bundle morphispi: TM1 — TM2 by
means of the tangent map:= (¢o).. This generalizes in the following way.

Definition 4. Let (E;, [+, -], i) be Lie algebroids over base manifolt, i = 1, 2. We say
that a bundle mag : E] — E3 is a comorphisnif the induced operato® : I'(E2) —
I’'(E1) satisfies the following properties:

(@0)*(2(s2)(f)) = P2(@(s2))(P0)*(f)) VS € C(M>),
52 € T(E2)®([s2. 55]) = [®(s2), D(s5)] V2, 55 € I'(E2).

In this terminology a Poisson map thus corresponds to a comorphism of the respective
Poisson Lie algebroidg? then being nothing but the pullback of differential 1-forms.

An algebraic generalization of these notions in terms of pseudoalgebras may be found in
[20], such that a morphism (comorphism) of Lie algebroids corresponds to a comorphism
(morphism) of the related pseudoalgebras, respectively.

We conclude this section with a short remark about covariance of the field equans
and (14) Obviously the total set of field equations must be covariant—they are the Euler
Lagrange equations of a completely covariant action functional, cf.,(&@®.or (12), or,
likewise, they can be reformulated frame independently #24h On the other hand, the
field equationg14) are not only written in an explicitly covariant form, by themselves they
even are not frame independent. The reason for this is the (kind of) Leibniz rule satisfied
by the operato(25),

Fylwn A ) = Fylwp) A D(wh) + (—1)'D(w2) A Fylah). (35)
which holds for arbitrarys, € I'(APE3), w, € I'(AYE%). Indeed, with the abbreviatiohs

Fl = Fy(X') = di X' — ph Al (36)

Fl = FBy(p") = AT + 1Cl A7 A AK, (37)

the first and second set of field equations Afe= 0 andF!/ =0, respectively. Suppose
now we change frame frod to a new oneb’, by means ob! = B/b’. Then, by means

of (35), we find F! = §l>(B§)F7 + ®(B! )F' A A7. This obviously implies that only upon
usage of’ = 0, which itself clearlys covariant (also with respect to change of coordinates
X' — X'), we may conclude! = 0 from F/ = 0.

This may be cured by means of an auxiliary connecfioon E», introducing

Fpyi=F + T5F A A7 (38)

This option shall be investigated into further depth in a separate papein the present
paper we are interested particularly in morphisiits= 0 = F’, in which case covariance

of (37)is of subordinate importance. The issue of covariance will become more important
in the context of the following section, however.

4 For notation and conventions recall endSgfction 2
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4. Generalized gauge symmetries

We now turn to interpreting and generalizing the gauge symmetries of the PSM. In view
of the generalizatiof36) and (37)of the field equation$13) and (14)it is suggestive to
replace the gauge symmetrig$) and (16py

X' = phel, (39)
AT = dre! + Clp AT X, (40)

without further mention it is assumed furthermore Tszabbeys an (ungraded) Leibniz rule
(which is used, e.g. when establishing gauge invarian¢gIgfup to boundary terms).

As we were able to cagB6) and (37)into a more elegant and covariant form, cf.,
e.g.,(34), and prove the equivalence of their vanishing with the morphism property of Lie
algebroids, we may now strive for similar issues in the contef®@®f and (40) This indeed
is part of the intention of the present section. However, first we need to notice that in the
context of symmetries the non-covariance of the form(883, (40) or (15), (16)s much
more severe than in the case of the field equations, which are not only written in explicitly
covariant form in(13) and (14)while, as a total set, they certainly are covariant. As written,
the symmetries either have only on-shell meaning (when there is an action functional as in
the PSM this is tantamount to having meaning only as quotient of all symmetries modulo,
the so-called trivial ones, cf. al§8]) or they are defined only for trivial or flat bundlé&s
(respectively, for topologically rather trivial Poisson manifolds)!

Let us be more explicit about this. An infinitesimal gauge symmetry su¢B3sand
(40) is supposed to be a vector field on the (infinite dimensional) spdce {¢ : E1 —

E>} = {@} of fields and thus, for a fixed elemapin M, a vectory € Ty M. Note thatM
is a bundle overMg = {¢g : M1 — M>}, the space of base maps. The projectioly ¢d
Mo then gives a vectovy € T4, Mo. EQ.(39) indeed corresponds to a vector 8o, as
may be seen by changing coordinates\in(or likewise also local frames ifi;). However,
(39) and (40together danot give a well-defined vector on the total spak¢. Indeed, if
we change frame iE5, b' = BLb’, such thate! = B!(X(x))¢’, etc., a straightforward
calculation yields

die! 1 Cleal e = Bl(aye! 1 Ty ARKEL) 1+ Bl XTE + BY Bl AYEK

— By ok AR, (41)
on the other hand, by the Leibniz rule we obtain
8%BYATy = BY 6PA7 + B, AT 82X (42)
The difference of the right-hand sides(dfl) and (42)s
B, F'e. (43)

Therefore, in genergB9) and (40)do not provide a vector iffs, Mo; it is globally well
defined only on fields satisfying’ = 0 or whenB/, can be chosen consistently to Xe
independent. The first option is (part of) the on-shell condition, the second one corresponds
to the existence of a flat connection#i. In this cas€40) depends implicitly on the frame
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and on the flat connection chosen, which is zero in the particular frame chosen, but becomes
non-zero if we change the frame.

At this point let us emphasize théat is not a tangent vector field ta1 if it satisfies
3cA! = Bls A’ (which would correspond to the absence of all three ternfg 1) with
respect to a change of franhé = B’bf it is an element of ;M only when it satisfies an
ungraded Leibniz rule, i.e. in part|cular

8cA" = BYs. A’ + B AMd.x! (44)

(which would correspond to the absence of the last and the third to last t¢dmh)invhich
together combined int¢43)). As a consequence, even if one uses a connectiafi,o
provide a global and frame independent definition of the tangent vegtotise explicit
formula fors. A’ will notbe covariant (in the usual sense) with respect to capital indices
(containing only covariant derivatives afd-tensorsy, In contrasts. X' is covariant with
respect td, since multiplication by (the pullback of) the Jacobian of a coordinate change
on M> is in agreement with the Leibniz property &f

For the rest of the section, we will proceed as follows. In view of the above obsenétion,
as defined if39) and (40yhould have a good, more abstractshelinterpretation. Indeed,
we will see that it corresponds to an infinitesimal homotopy of Lie algebroid morphisms.
Simultaneously this picture provides an on-shell integration of the infinitesimal symmetries
82. Next we want to lift the on-shell symmetry to a well-defined off-shell symmetry. This
is not unique certainly. One option is to do this in such a way that the (infinitesimal) inner
automorphisms of; andE» are contained as Lie subalgebras. This will turn out to be done
most efficiently interms d-Lie derivatives of the exterior sum Lie algebrdid= E1 B E>.
The second option is to employ a connection/n such that for flat connections, and
in a frame for whichl” = 0, one re-obtains the original formulas ﬁQr. This second option
shall be mentioned at the end of this section peripherally only; for more details we refer to
[17].

Definition 5. Let E1 andE; be Lie algebroids over smooth manifolttg andM>, respec-
tively. We say that the two morphisms¢’ : E1 — E» arehomotopidff there is amorphism
¢ from the Lie algebroidt := E1 B TI over the manifoldV = My x I, I = [0, 1], such
that the restriction ap to the boundary component$; x {0} andM; x {1} coincides with
¢ and¢’, respectively.

Proposition 7. Two Lie algebroid morphismég and ¢’ are homotopic iff they can be
connected by a flow éf as defined ir(39) and (40)

Note that, as outlined abové? is well-defined on-shell, i.e. as a vector field on the subset
of M satisfying the field equation§ = 0 = F/; in the above propositiosf is understood
in this on-shell sense.

5 There is one trivial exception to this statement, namely the case for which the second (égjvianishes
identically (for all choices oBﬁ(X)). This happens if8. X’ = 0 for all ¢, which, in view of the covariance and
off-shell validity of (39), in turn is tantamount tp = 0, i.e. this happens iff; is a bundle of Lie algebras.
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Proof. Givenalocal framgb;} in E» over a coordinate chaﬂ("}, we immediately obtain
the following system of equalities from the chain propertyof

Fr=fdxi—pial =0, F'=Eda’+1cl A’ A AK =0, (45)

where the structure functior@}, and o} depend onX(x), x € M1, but not ont. On the
other hand, by definitionf = E1 8 T1 and £dy = d1 + dr A ;; correspondinglyA’ =
Al + Al'dt, with AT = Al() = ALb* being (localX-dependent;-1-forms. Adaptind45)
to this splitting, and renaming! to €/, we obtain

F' = Fi(r) + di(3, X" — phel), (46)
F' = FI(t) + dt A (3,A" — dre’ + Cle’ AF), (47)

where F' and F' are of the form(36) and (37)and 3, A" = (3;AL)b®. This proves that
F' =0= F'iff forany tone hasF’ = 0 = F! andd, X* = delXx*, 3,AK = delAK. O

If M; are manifolds with boundary one has to take care about boundary conditions. In
particular, the space of morphisms fr@thto an arbitrary Lie algebroil over a manifoldvi
modulo homotopies (with fixed boundary contribution) givestimelamentabr Weinstein’s
groupoidof E, cf. [5]. Thus, the on-shell part of gauge symmeti{@d) and (40)is well
motivated now. It corresponds to the infinitesimal flow of a homotopy of Lie algebroid
morphisms. In its spirit this observation is related alsf2].6

We now turn to a possible off-shell definition of the gauge symmetries without the
introduction of any further structures such as a connectiafyppmployed in an alternative
approach itj17]. Concretely this means that we want to exté3@) and (40}o a differential
8, satisfying(44), where forF’ = 0 = F/ the gauge transformatidi reduces té°—and
we want to relate this differential on field space to a differential operator on or between
finite-dimensional bundles, in analogy of what we did with the field equations.

Definition 6. We call an operatop : .Q‘EZ(MZ) — Q'Etdegv(Ml) a &-Leibnizoperator, if
it satisfiesvw, o’ € Q'El(Ml) (w homogeneous)

V(o A @) = Vo) A D) + (—1)%89V%% @) A V(), (48)

and likewise an operatd®’ in 2, (M) (of fixed degreef®-Leibnizif it satisfies the above
equation with) and® replaced by*V andf®, respectively.

An example for a degree ®-Leibniz operator is provided by, cf. Eq. (35); likewise
EF¢,, defined in 84), is £®-Leibniz. More generally, obviously any consecutive application
(in both possible orders) of a (standard) Leibniz operator witff®) gives ad-Leibniz
(Ed-Leibniz) operator.

Definition 7. We call 6@ : 2, (M2) — $2, (M1) aninfinitesimal gauge symmetrif
it is a degree zer@-Leibniz operator satisfying16® ~ §&d,, where~x denotes an on-

6 We are grateful to the referee for pointing out this to us.
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shell equality (i.e. it has to be an equality for @lwith F; = 0). Likewise a degree zero
Egp-eibniz operatof’s® is an infinitesimal gauge symmetry if it satisfies

[“50, fd] ~ 0 < [, Fd]| 42, 2gj—0 = O (49)

and im&® c im Py, B® o P = 0.

This is motivated as followss® ~ d&,/dt|,—o for some family of@’s parameterized

by t. Correspondingly, sinc@ is of degree zero, alsé® is, and functoriality of®,

P(w A @) = P(w) A P(o'), results in thed-Leibniz property. Finally®, satisfying the
field equations implies that does so on use of the field equation fbr~ &,—_g. All this
applies analogously t65®, where, however, in addition we need to take care of the fact
thatZ® is not an arbitrary operator if2, (M), but restricted as specified (8) and the text
thereatfter.

One of the main features of a gauge symmetry is that it maps solutions of field equa-
tions into solutions. Here, the solutions have the meaning of a morphism (of Lie al-
gebroids)¢ : E1 — E». To construct gauge symmetries we may thus proceed as fol-
lows. Let the gauge transformed morphigimbe given by = (a1)~1 o ¢ o as, where
a; € Aut(E;), i = 1, 2, the respective group of automorphismskyf This defines a right
action of Aut(E1) x Aut(E2) on M = {¢}, which on the level of Lie algebras provides a
homomorphisnut(E1) @ Aut(E2) — I'(TM).

A subgroup of the automorphism group of a Lie algebfe& g; is the group of inner
automorphisms, given by the adjoint action of the Lie graupwhich integratesy;; in-
finitesimally, this is just the regular representation of the Lie algghrae. the action of
g, onto itself given by multiplication in the Lie algebra, — [v;, -] (& homomorphism of
g; — Aut(g;)). Although not every Lie algebroid has a (sufficiently smooth) Lie groupoid
integrating it (cf[7] for the necessary and sufficient conditions), we still may generalize the
infinitesimal picture to the setting of Lie algebroids. Given a sectjon I'(E;), we may
regard®iL,, as a vector field ot;, which due toFiL (s;) = [s:, s7] and the Jacobi property
of the Lie algebroid bracket, is an infinitesimal automorphisnk of

ThatEiLsi indeed can be regarded as a vector fiel&pmay be seen as follow&: > (M;)
andQ}Ei (M;) are fiberwise constant and bilinear functionsfynrespectively. Together they

generate all o> (E;). Local coordinateX on M; and a local coframé’ provide a local
coordinate system oA;. Applying a vector field to local coordinates gives its components
in this coordinate system; these components may be easily extracted fr¢2iJzghowing
that they are linear in the fiber coordinates. Thelie derivativeZiL;, provides a uniquely
defined lift of p(s;) € I'(TM;) to I'(T(E;)); in contrast to the lift given by a contravariant
connection this lift is noC>-linear ins;, certainly.

Proposition 8. For arbitrary sections € I'(E;),i = 1, 2,
s =dofy, —Fi o (50)

is an infinitesimal gauge symmetry. For ahye M, its action on a local coordinate system
Xt b! on E; defines a Leibniz operatdg (an element in"(7,M)), which agrees with
80 given in(39) and (40)pn-shell, wherg = @'(s2) — 0, A (@NdA = &'(8) = A @ by).
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Moreover, the commutator of two such infinitesimal gauge transformations is again of the
same form, §c, 8] = 8.7, wheree” results froms] = [s1, 5] ands) = [s2, s5].

The statement in this proposition may be simplified by saying that there eXista@amor-
phismI'(E1) @& I'(E2) — I'(Tp M), 8(s1.5,)P — 8¢; however, we refrained from doing so,
since, at least at this point, we did not want to go into the details of defining properly the
infinite-dimensional tangent vector bundiéV (while still we will come back to this per-
spective in more detail below). Let us remark already at this point, moreover, that the set of
€'s that one may obtain in this fashion is too restrictive, yet. Assume, e.gp tatesponds

to A’ = 0 andX/(x) = const. Then any of the above form is necessarily constant, while

it need not be so i(39) and (40)wheree € I'(M1, ¢y E2) arbitrary.

Proof. Firstitis easyto see théd0)provides an infinitesimal gauge symmetry in agreement
with Definition 7. As a composition of Leibniz operators withit is ¢-Leibniz, and since
Eif -Lie derivatives commute with the respective differendfall; ® ~ ®d> is seen to result
iNn di86® ~ §Pd>.

To determine the desired mag (s2) € I'(E1) @ I'(E2) to € € I'(M1, ¢3E2), we may
use Cartan’s magic formufd9) to rewrites® = §,, 5,)® according to

Ssg.s0)® = PFLyy — Pl ® = 8% & — (Fytyy + Ly F). (51)
where
80y @ = d1(Pls, — 15, D) + (DL, — 15, D)do. (52)

While the last two terms i§51) vanish on-shell obviously, it is easy to verify tI”&%INZ)

acting onX’ andb’! agrees WithSQ in (39) and (40with the parametet as given above.
Finally, since actions coming from the right and left commute, itis obviousdhat}] (with

e ande’ of the given form) when applied ta’ and¢3Xi is tantamount to the application
of ®o[FaL,, EZLX/Z] —[FiLy,, ElLS/l] o @ to b! and X, respectively. The statement now
follows sinceE;-Lie derivatives are a representation/of;). [

Note that in contrast tbf, the operatos?sl)sz)cb in Eq.(52)is defined frame independently.
However, now it is not @-Leibniz operator (only on-shell it is). We remark in parenthesis
that one may also generalize the operator in(&g) to the one defined for arbitrary sections
€ € I'(My, p3E>): 88@ = diic + i.d> with the operator, being defined by means of

k
i(fbIE A A D) = Z(_]_)./+161j<p(fb11 Ao ABT A A DI, (53)
j=1

But such somewhat artificial constructions do not seem very promising. Instead, the right
step is to take recourse to the exterior sum butitiie E1 B E». This has the effect that at

the end of the sectiod's»|, = s2(X(x)), x € M1, of the previous proposition is replaced

by a likewise section that depends on both variab{gs) andx, independently.
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Theorem 1. Any sectior € I'(E) which is projectable to a section &f; (p1-projectable
defines an infinitesimal gauge symmetry by means of

Es.d = [F@, EL,], (54)

and the commutator of two such gauge transformations,fdris the gauge transformation
associated tde, €'] € I'(E). In particular, for “vertical’ sectionse € I'(pr; E2) C I'(E)
its action on local fieldsc’, A is given by

seX! = 82x1, 8 AT = 8047 — ¢, F', (55)
wheres® was defined ifEgs.(39) and (40\nd F' ~ 0in Eq. (36).

Proof. Obviously Z5.® is £@-Leibniz, and it obeys Eq(49) since fd commutes with
any E-Lie derivative and on-shell (by definition) also wifi®. Thus it remains to check
the final two restrictions on an infinitesimal gauge transformation specifi€iimition
7. It is these conditions that make the restrictionptpprojectability (as defined in the
beginning ofSection 3where the bundle mapis replaced by : E — Ej, cf. diagram
1) ofe € I'(E) necessary. To see this we first spléccording taE' = prj E1 @ pr; Ez into

€ = €1 + €2 and use linearity ir. Due to o, £L,,] = £®EL,,, the image offs., @ lies
trivially in im P; = im £&, and also obviously it acts trivially oRy(w1) = w1 ® 1 for all
w1 € 2y,(M1). To ensure that alsﬁﬁelqb kills all w1 ® 1, we introduced the commutator
of EL., with £, the latter operator acting as the identity on the imag&ioHowever, in
this case both conditions are satisfied if and onlyjidepends onx € M1 only, but not
also onX € M; (consider, e.gL, k@ = 1., df® + - - -); more abstractly this means that
is p1-projectable, the correspondirigiLie derivative generating only automorphismstof
that are preserving fibers ovf;.

Two successive gauge transformations with paraneedeide’ are characterized by the
operator [f®, £L.], L.].” Subtracting from this the corresponding operator witmde’
exchanged and using the Jacobi condition for the (graded) commutator bracket, we obtain
[£®, [ELc, ELo]] = [F®, EL{c ], @ gauge transformation with parameterd].

To relate the gauge transformations above to explicit transformations acting on the fields,
we proceed similarly to before (cf. Eq&1) and (52), where now the splitting becomes a
bit more elegant:

Es.d = [Eo, [Ed, 1]] = B82@ — [EFy, 1], (56)
520 = ["d. [, ], (57)
where we made use of the (graded) Jacobi property anBefiaition (34)for £F,. Upon
action onX', b’ (or, more generally, the image @% : 2,,(M2) — 2,;(M))—and for

€ = 51+ sp—the operatonEageb is identified easily with the one i(62); for generalps-
projectable it just provides formulag39) and (40) The on-shell vanishing contributions,

7 That the successive application of a vector field in field spetkas again such a simple operator-description
(being a second order differential operator.bty it is now no more’®-Leibniz, certainly, but satisfies a similar
higher analog of this property), is also a benefit of the present approach using operaiieWn E = E; B8 E».
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necessary to render the gauge transformation globally defined and Leibniz, are now easily
calculated to be

[EF¢>, le]Xi = lelFi’ (58)
[EF¢, 1]b! = —eé,i F' + lélFI. (59)

Note that here we used théFd,(eé) contributes only by its derivative with respectXo
but not also with respect tq the latter terms cancel in the commutad4). Eq. (55) now
follows by specialization te = €. O

Given sections; € I'(E;), i = 1, 2, there is a natural inclusion as sections of the exterior
sumE of E; andE». With € := 51 + 57 it is easy to see that the action@f @ on X? andb’
precisely reduces t®® as given in(50). The extension of the present approach is that now
s2 may effectively depend also on(and that due to using the graph both, the action from
the left and the action from the right Proposition &ow come from the right); due to this
x-dependence of; (while €7 is still not permitted to depend oX), the total action is no
more a direct sum of (E1) with I'(E2) as inProposition 8but a semidirect sum, spanned
by the two Lie subalgebras generatedéhyande;, respectively.

Itis needless to say that an explicit verification of the closure of the symmgGgcr
even as the one with= ¢; + €2, cf. Eqs.(58) and (59) would be a formidable task. This
now was reduced to a simple line only. We may even use the above approach to simplify
the likewise calculation of the commutator of the initial symmetries (say in a flat bundle or
used in one particular coordinate patch):

Corollary 1. The commutator of two symmetri€89) and (40)corresponding tc, €' €
I'(¢5E2) is

i K
[0, SO]X’—zS[“,]X’, [62,89]A" = WAl = Clg i Fle' ™, (60)

[ee

where[e, €17 := ¢3(Chi)e’ €.

Proof. Any section of I"(¢jE2) can be regarded as the restriction of some section in
I'(M, pr5 E2) to the graph ofo : M1 — M2 insideM. Notice that this choice is not unique,
certainly; given a flat connection dfp, or in a particular local frame’ (which underlies the
definition ofs%!), we can choose this extension to be constant aMpdibers orindependent
of X. We denote these extensions again by the same letters. Note that the breckdtices
the bracket as specified above when restricted t@gﬁaéMl) C M; however, the bracket
[e. €] C I'(M, pr} E>) is in generahot constant along/;-fibers; in general it depends on
X due to theX-dependence of the structure functicﬁ{ﬁ(. By use of Eq(55)we thus obtain
immediately

[62, 821X" = [8e, 81X" = Sje,e X' = 8. o X', (61)

e e

€ V¢

[62, 89147 = [8c, 8 1AT = S ) AT = 80, AT = Cl Fie/ k. D (62)
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In the particular case of the PSM this reproduces the well-known contribution rendering
the algebra to be an “open” algebra. We now see that this may be avoided by the additional
contribution in(55)at the cost of keeping track of th&x) dependence &f which, however,
anyway cannot be avoided in the case of a general, non-flat béiadle

Summing up, we see that the gauge symmetf{ts are well-defined off-shell and
globally. They are one possible off-shell extension of the always defined on-shell version,
recognized above as a homotopy. Another extension is provided by a connectfignlian
rather explicit terms this takes the form (besides the obv(i{:{aﬁi = 8. X"):

sAT = 8241 4 I Fie. (63)

Let us remark that similar to our considerations about homotopy—but without reqiiring

to vanish—it is possible to view these transformations as the components of the covariant
curvaturesF’ and F’F in a (14 dim(M1))-dimensional space-time, cf. E(B8). For a

more detailed and coordinate independent explanation of this alternative we rigfé}. to

For both off-shell extensions it is clear by construction that they map solutions to the
field equations into other solutions. However, it is not clear that, when specialized to the
PSM, they would leave invariant the action functional (since then the invariance needs to
hold off-shell). In fact, if, e.g. one wants to check invariance of the PSM a¢libjwith
respect td63), specialized to the Poisson case, one finds invariance faralk;(x, X(x))
if and only if the connectior” is torsion-free.

We now want to discuss the same issue for the cagg%)f also in a more coordinate

independent way. For this purpose we returii1i@), rewriting it, however, in a way more
suitable to the graph maf#"@ (we prefer to use9"@ here instead of¢, since for an action
functional we need a volume form aWfy, not a form on all ofM = My x M>). We first
remark that the joint map Al @* can be obtained also as the dual magp te= ¢ ® (¢o)s :
TM1 — T*M> & TM>. Indeed, the induced mapthen just maps™ (A (TM2)) ® £2'(M>)
to forms overM; and® = Alt®*. Next, we may repeat the steps above for the pp
instead ofp by replacing the target Lie algebroid in the map E1 — E> by E = E1 H
E>. S0,¢%a = 9 (¢5 ) : TM1 — E & TM and @92 acts fromI"(A'(E & TM)*) =
23(M) ® §2'(M) to £2'(My1). In this way we obtain

S[¢] = /E B+ P) = /2 ooras 1 ), (64)

To determine the variation ab9r2 with respect to a gauge transformation, we first need

to extend theE-Lie derivative“L defined onE to E @ TM (which is not a Lie algebroid

itself in general), i.e. to definéL. on elements of2;,(M) ® $2'(M) for anye € I'(E): let

EJ. restrict tofL, on Q23(M) and act ad. () on £2'(M); this gives a well-defined action

on the tensor product since the two actions agree on functions. Then for any projectable
sectione € I'(E) one hass.(#9@) = @UrafL, — [,y @93 where (1).(€) € I'(TM1)

is the projection ot to £; = TMj, andL denotes the ordinary Lie derivative. The second
contribution ins.(#9'2) takes care of the fact that one respects the graph property. Now we
are ready to state the following proposition.
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Proposition 9. The PSM actior{10) or (64) is invariant with respect to the gauge trans-
formations(55), if the projectable section e I'(E) = 21(M5) satisfies

(P* @ id)(dz¢) = O, (65)

where dy is the de Rham operator oveM> (extended trivially to M = M x
Mp>).

Proof. In this situation we now have the identificationsi = TM1, E2 = T*M>, E =

TM1 B T* M3, and2p (M) = @ pqg=m 27 (M1) W I'(A9TM3). Thus d; coincides with the

de Rham operator oM. HereP € I'(A?TM3) ands € I'(TM3) ® $21(M>) are sections

of 2(M) ® (M) living only over Mo. Since[M1 L¢ equals zero for any vector field

& € I'(TMy) (taking into account thaL:(-) is always exact when acting on a form of
highest degree), it is sufficient to check the statement for an arbitrary “vertical” section
e € I'(pr; E2) (whose projection to TWvanishes). One can easily calculate that

EL(8) = die; @ AX'+P/'3; @ diej + (€ji—ei )P or @ dX' € 2L (M) ® 2Y(M),
(66)

ELG('P) = Pﬁdlej ® 0; + %(6./,,' — e,-,(,)P’“'Plfak RS .QZE(M), (67)

which implies that the corresponding variation of the PSM action in the f@pequals
ELESPSM = / die; N dx’ + (GJ'J' - Gi,j)ijAk X dx!
M,

1 o
+ E(ej’i — ei,j)PklPlek A Al (68)

Clearly, the expressio(68) vanishes ifiM1 = ¢ and the required conditio(65) holds,
which implies that{;; — ¢, ;)P*3 = 0. O

Inthe remainder we briefly compare with another point of view on gauge transformations,
viewed as an action of a certain infinite-dimensional Lie algebroid living on the space of
base maps, cf19]. Let E; be Lie algebroids oveM;, i = 1, 2. Then there is a vector
bundle€ over the spacé of smooth mapgg acting fromM1 to M2, defined such that
the infinite-dimensional fibef, at any poinipo is I"(M1, ¢y E>2).

One has a natural map Ificicting from sections of BrE2 overM, as used before, to sec-
tions of€ over M: any section € I'(M, pr; E3) gives a section of by the ma Indf,
such that Ind (¢o) = (¢g )*s € I'(M1, $3E2). The map Ind is an embedding; moreover,
the space of all sectiod3(Mo, &) is generated by Iq‘ﬂ s € I'(M, pr; E2) over an appropri-
ate algebra of “smooth” functions oWl o. For example, iE2 = TMz thenthe corresponding
bundle ovetM can be thought of a8.M . Let us notice thal' My is also a Lie algebroid,
such that the map Ifd: I"(M, pr; TM2) — I'(Mo, T Mo) respects the Lie brackets. We
can easily extend this fact for a genefal> Mg obtained as above. For this purpose we
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introduce an anchor map : £ — T.M such that the following diagram is commutative:

Ind®

I'(M,pr; E;) —  I'(Mo, &)
Pl % (69)
T
r(M. prs TM2) ™% F(Mo, TMo),

Now the Lie bracket on the image &f(M, pr; E2) can be extended to the space of all
sections of"(My, &) by which it becomes a Lie algebroid bracket.

As an example, consideéd, = pt, E2 a Lie algebrag with trivial anchor mape = 0.
ThenMg consists of only one element, afid= C°°(M1, g) is an infinite-dimensional Lie
algebra of “multiloops”.

In the language of Poisson sigma models, or more generally in the setiiingofem 1
3. defines a gauge transformation for any sectienl" (Mo, £). The previous discussion,
however, only led to an action 6f(£) on base mapgg : M1 — M- via the vector fieldp(e)
on Mo. More generally, all vector fields; € I'(TM1) andvs € I'(TM>) define sections
v1 andwy of I'(Mj) which at a pointpg € M take the value

v1(¢0)(x) := depo o v1(x) (70)

and

v2(do)(x) 1= v2 0 go(x), (71)

respectively. Here, we usky, Mo = I'(M1, $§TM2) such that a vector field oMM is
defined by giving its value(¢o)(x) € ¢5TM2 in a mappo and a poinkc € M. Both vector
fields can be seen to generate left and right compositions of diffeomorphisii#g and

Mo, respectively, with maps imMg. As such, those vector fields always commute with each
other. Sections oE1 and E; then define vector fields aMg throughpi(e1) € I'(TM1)
andpz(e2) € I'(TMy).

This construction is clearly not general enough for our purposes. For gauge transforma-
tions we need vector fields which act on the set of bundle ntaps> E» (i.e. “classical
fields") denoted ag1. This spaceM is a bundle oveM with fiber over a poingg € Mg
equal to2}, (M1, ¢} E2).

Vector fields onM suitable for gauge transformations can advantageously be defined
in the framework of infinite-dimensional super-geometry (however, an advantage of our
independent construction is that we avoid infinite-dimensional supercomplications). A vec-
tor bundleE — M can be thought of as A-graded manifold, denoted d41], with the
parity of the fibers defined to be odd. The algebra of smooth functiGh&E[1]) on E[1]
is naturally isomorphic td" (M, A° E*), and any bundle map; — E> between two vector
bundles becomes a degree preserving mgf] — E2[1]. For any Lie algebroidc — M
the canonical differentidid defines a (super-)vector field of degree 1 tange[id, en-
dowing E[1] with a Q-structure. (AZ-graded manifold endowed with an odd nilpotent
vector field is called &-manifold[1].) Using this formalism, we can reformulate the chain
property(24): a Lie algebroid morphism is a map: E1[1] — E2[1] of degree zero, such
thato,(d1) = da.
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Denote the space of all graded mapgl] — E2[1] as.My (containingM as the zero
degree part). Analogous to the previous construcfitf)), the vector fields/; anddz on
E4[1] and E2[1] naturally generate commuting vector fiekisands, on Mz, respectively
(corresponding to left and right compositions of morphisms). Sihandd» are odd and
nilpotent, so aré; andd,. The difference d:= de; — des is again a nilpotent vector field
of degree 1. Moreover,edvanishes on the set of maps which preserveQbstructures (in
particular, on the set of Lie algebroid morphisms).

A Lie algebroidE can be identified with the tangent bundle TE[1], where the action of
a vector field on function€°°(E[1]) = I'(M, A E*) is obtained by contraction betwe&n
andE*. If we have a sectioa € I'(My, £) taking values inE», we obtain a vector field
on M. UsingTyM = I'(Ey, $*TE>), the vector field € I'(TM) is defined by

€(@)(x) = €go(ma(x)) 0 B(x)

for x € E1 and withmy : E1 — M1. Using the super structure @#17, € is a vector field

of degree—1. A straightforward computation shows that the supercommutator betiveen
and the contraction with is a degree preserving vector field (therefore it is tangent to the
subspace\). This formula for a generalized gauge flow expressed as a supercommutator
is an analog of Cartan’s magic formytE9), which now holds in the context of an infinite-
dimensional geometry of graded maps. One can use this infinitesimal transformation to
generalize the gauge transformati@®) to sections which not only depend o € Mo,

but also depend on the map nontrivially. In particulare might be a functional determined

by higher jets of a base mad; — M>.8 In a similar way, we can express sections of

€1 € I'(E1) as vector fields ooM:

€1(9)(x) == ¢ o ex(m1(x)).

Note that, unlike the vector fields defined (70), vector fields obtained in this way
from €1 € I'(E1) and e € I'(Mo, ) do not commute in general sineealso depends
on Mji.
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