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Abstract

Chern–Simons (CS) gauge theories in three dimensions and the Poisson sigma model (PSM) in two
dimensions are examples of the same theory, if their field equations are interpreted as morphisms of
Lie algebroids and their symmetries (on-shell) as homotopies of such morphisms. We point out that
the (off-shell) gauge symmetries of the PSM in the literature are not globally well defined for non-
parallelizable Poisson manifolds and propose a covariant definition of the off-shell gauge symmetries
as left action of some finite-dimensional Lie algebroid.

Our approach allows us to avoid complications arising in the infinite-dimensional super-geometry
of the BV- and AKSZ-formalism. This preprint is a starting point in a series of papers meant to
introduce Yang–Mills type gauge theories of Lie algebroids, which include the standard YM theory,
gerbes, and the PSM.
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1. Introduction

Yang–Mills (YM) gauge theories are an important ingredient in our present-day un-
derstanding of fundamental forces. On the mathematical side they are governed by a
principal fiber bundleπ : P → Σ, whereΣ is our space–time manifold. Here any fiber
π−1(x), x ∈ Σ, is aG-torsor, whereG is the Lie structure group ofP. In the simplest case
whenP is a trivial bundle,P ∼= Σ ×G,π is the projection to the first factor, and theG-
action onP is defined by right multiplication in the second factor. For the standard model
of elementary particle physicsG = SU(3)× SU(2)× U(1), but also other, “larger” Lie
groups come into mind in the context of a further unification of fundamental interactions.

Gauge bosons correspond to connections inP, matter fields are sections in associated
fiber bundles (usually vector bundles), and gauge symmetries are the vertical automorphisms
Autv(P) of P. In the case of a trivial bundle the gauge bosons are justg-valued 1-forms
A = AIbI onΣ, whereg is the Lie algebra of the gauge or structure groupG, bI is some
basis ing, andI = 1, . . . ,dimg. Sections of vector bundles then correspond to vector-valued
functions (or spinors) onΣ and the infinite-dimensional group of gauge transformations
Autv(P) becomes isomorphic to Map(Σ,G). Thus infinitesimally gauge symmetries are
parameterized byε = εIbI ∈ Map(Σ, g) and one hasδεAI = dεI + CI

JKAJεK, whereCI
JK

denote the structure constants of the Lie algebrag.
All fundamental interactions fit into this framework except for gravity. Even though it is

possible to cast general relativity in the language of a gauge theory of connections[2], the
gauge symmetries contain the diffeomorphisms ofΣ. The Lie algebra of Diff(Σ) consists
of vector fields onΣ. This has to be contrasted to elements of Autv(P) ≡ Lie(Autv(P)),
which always have a trivial projection toTΣ. On the level of a Hamiltonian formulation
of the theory this usually leads to structure functions in the algebra of constraints, whereas
for YM gauge theories the algebra of constraints is governed by the structure constants
CI

JK (cf., e.g.,[10] for details). Structure functions of first class constraints are a typical
feature of a formulation of a theory with an open algebra of gauge symmetries, where the
commutator of infinitesimal gauge symmetries closes only on-shell, i.e. upon use of the
field equations. In YM theories, on the other hand, gauge symmetries always form a closed
algebra. In a way, within YM theories many considerations of gauge symmetries can be
reduced to a finite-dimensional group, the structure groupG, whereas for gravitational
theories all of the infinite-dimensional group of gauge symmetries seems unavoidable.
This may be regarded as maybe one of the main obstacles in a successful quantization of
gravity along the lines of YM gauge theories.

It may be an important step to broaden the framework of YM gauge theories in such a
way that also some gauge theories with an open algebra of gauge transformations fit into
it, while still many considerations can be reduced to a purely finite-dimensional setting. In
[25] (cf. also[26]) a particular program in this direction has been proposed. Essentially, the
structural Lie groupG of a YM theory is replaced by (or generalized to) a so-called Lie
groupoid; correspondingly, the Lie algebrag generalizes to a so-called Lie algebroidE.1

1 Among others a Lie algebroid is a vector bundleE → M carrying a Lie bracket for its sections; forM a point
one obtains a Lie algebra, whileE = TM with the Lie–Jacobi bracket for vector fields onM is another prominent
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The present paper is the first one in a series of papers devoted to this subject and aims at
providing part of the mathematical basis for the others.

From some other perspective our goal is to provide a better understanding and definition
of “non-linear gauge theories”, as they have been suggested already quite some time ago
by van Nieuwenhuizen and collaborators, cf., e.g.,[23]. Heuristically, in such a theory
one wants to replace the structure constantsCI

JK of a standard YM theory by some field-
dependent quantities, which then generically will lead to a theory with an open algebra
of gauge symmetries, due to the transformation ofC’s. In our approach,CI

JK will be the
structure functions of a Lie algebroidE → M.M then serves as a target space for a sigma
model so that the mapΣ → M locally corresponds to a set of scalar fieldsXi(x) and the
coefficientsCI

JK depend on these fields in general; from a physical language these fields
can be some kind of Higgs fields or they can turn out to be just some auxiliary fields that
do not carry any physical degrees of freedom after integrating them out appropriately. In
addition to them locally one still has a set of 1-form gauge fieldsAI .

In two space–time dimensions, dimΣ = 2, a prototype of such a non-linear gauge theory
is provided by the Poisson sigma model (PSM)[22,12]. It is worth mentioning here that
in this particular space–time dimension, essentially all possible YM gauge theories and 2D
gravity theories find a unifying formulation as particular PSMs (cf., e.g.,[21,13]). In all
of our work we want to use the PSM as a kind of main guiding example for developing a
more general theory. In particular, in the present first paper we show how the field equations
and the gauge symmetries of this model are related to Lie algebroids. Focusing on the case
corresponding to a trivial principal bundle, the field content of the PSM, locally described
by a set of couples (Xi,Ai)ni=1 of scalar and 1-form fields, respectively, corresponds to
vector bundle morphismsφ : TΣ → T ∗M. SinceM is a Poisson manifold, both the source
and target vector bundle carry Lie algebroid structures. The content of the field equations
will then be shown to be equivalent to requiringφ to respect the Lie algebroid structures,
i.e. to be Lie algebroid morphisms.

Whereas for Lie algebras it is very straightforward to define the notion of a morphism,
for Lie algebroids the situation is somewhat more intricate. After setting the notation and
collecting some background material inSection 2, in Section 3several formulations of such
a morphism will be mentioned and related to one another. Essentially one needs to dualize
the mapφ, requiring it to be an appropriate chain map. However, in our final formulation,
using the graph ofφ, this can also be circumvented.

An important observation in this context is that also YM-type gauge theories such as
the Chern–Simons theory fit into that framework. Flatness of a connectionA = AIbI in a
trivial principal fiber bundle is tantamount to the condition that the corresponding map from
TΣ → g, ξ 
→ AI (ξ)bI , is a Lie algebroid morphism. Correspondingly, in our investigations
we will replaceT ∗M of the PSM by an arbitrary Lie algebroidE2. In fact, for means of
generality we will also generalizeTΣ to an arbitrary Lie algebroidE1, although the main
example of physical interest may still be provided by the tangent bundle of space–time.

For the formulation ofφ : E1 → E2 in terms of the graph map one uses the fact that the
setE1 × E2 can be given the structure of a Lie algebroidE = E1 � E2 itself (details of

example. We will recall the notion of a Lie algebroid in the subsequent section; for further background material
on Lie algebroids and Lie groupoids we refer to the monograph[8] and references therein.
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this will be provided already inSection 2). It will then be shown thatφ is a morphism of
Lie algebroids iffφgra : E1 → E is a morphism. By construction, the base map ofφgra is
an embedding, permitting to work withφgra-related sections instead of with the dual map.

In Section 4finally we turn to the issue of gauge symmetries. We first point out that
the locally defined infinitesimal gauge symmetries usually used in the PSM are in general
not well-defined globally. They make sense only if the target Poisson manifoldM can be
covered by a single chart, or if it carries some flat connection, implicit but not transparent
in the usual formulas (Eqs.(15) and (16)). This is somewhat remarkable in view of the
already relatively large, and in part also mathematical literature on the PSM; in part this
may be related to the fact that in many physical examples of the PSM such as 2D YM and/or
2D gravity models a flat targetM ∼= R

n is used (cf., e.g.,[13,27,9]), which moreover also
underlies the Kontsevich formula[14], resulting from the perturbative quantization of the
PSM[4].

In Section 4we present one possible way of curing this deficiency, simultaneously
generalizing the gauge symmetries also to the context of arbitrary Lie algebroids. This is
done in such a way that for the particular caseE2 := g andE1 := TΣ one indeed re-obtains
the usual YM gauge transformations. Moreover, also in the general case, we will be able
to trace back everything to purely finite-dimensional terms. Employing the picture with the
graph,φgra : E1 → E, the infinitesimal gauge symmetries (and also what corresponds to
infinitesimal diffeomorphisms ofΣ) result from particular, structure preserving infinitesimal
automorphisms ofE, acting from the left onφgra (or from the right in the dualized picture
Φgra : Γ (Λ·E∗) → Γ (Λ·E∗

1)), and generated by particular sections ofEvia a Lie algebroid
generalization of the Lie derivative. As a byproduct we find that the gauge symmetries
formulated in this way close even off-shell. But also if one needs to calculate, e.g. the
commutator of the original symmetries of the PSM forM ∼= R

n the present approach
provides a significant technical advance.

Although this approach may be related also to an infinite-dimensional Lie algebroidE of
infinitesimal gauge transformations[19], the base manifoldM of which are mapsΣ → M

(or, more generally, maps from the base ofE1 to the base ofE2), one can consistently—and
with conceptual profit—truncateΓ (E) to the space of sections in the finite-dimensional
algebroidE. For the PSM a similar statement applies to its AKSZ-formulation[1,6], which
yields in a most transparent way the BV-form of the PSM.

As an alternative, one may also employ a connection in the target Lie algebroidE2
for providing another possible global definition of the gauge symmetries. While some
elementary formulas in this direction will be displayed at the end ofSection 4, a more
abstract analysis along the lines of the present paper can be found in another, accompanying
paper[17].

Both definitions of gauge symmetries can be made to agree for the PSM onM ∼= R
n,

as well as certainly in the YM-case. Also they always agree globally upon use of the field
equations, i.e. on-shell. Already the standard gauge symmetries of the PSM have a good
global on-shell meaning, as an infinitesimal homotopy of Lie algebroids. Correspondingly,
a homotopy of Lie algebroids defines an integrated version of the on-shell gauge symmetries
(Section 4). Globally and off-shell, however, the gauge symmetries defined via anE-Lie
derivative and those defined by means of a connectionΓ onE2 are different; in particular
also the latter do not close off-shell, their commutator containing contributions ofΓ .
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The formulation in the present paper as well as in[17] is put in such a form that a
generalization to non-trivial fibrations is rather straightforward. EssentiallyE, as a manifold,
is then not just a direct productE1 × E2, but a particular fiber bundle over the base ofE1.
In order to not overload the presentation, we found it useful to present this generalization
in another separate work[18]. All three papers together then are meant to provide, among
others, a basic mathematical framework for the definition of Lie algebroid Yang–Mills type
gauge theories.

Some particular action functionals for this kind of gauge theories are presented in[26].
They generalize usual YM gauge theories in arbitrary dimensions ofΣ as well as, e.g.
the Chern–Simons gauge theory in three and the PSM in two space–time dimensions. The
relation of the PSM to 2D gravity theories, furthermore, is extended to the definition of
topological gravity theories in arbitrary space–time dimensions in[28]. (Maybe another
sentence expressing the expectation that such theories will/may become “interesting” for
mathematics as well for physics—or maybe just end without that.)

2. Preliminaries

In this section we mainly set the notation and recall some background material needed
later on. We start with the Poisson sigma model (PSM)[22,12], presenting a slightly more
abstract definition of its action functionalS. S is a functional of the vector bundle mor-
phismsφ : TΣ → T ∗M, whereΣ is a two-dimensional manifold, called the world-sheet,
andM some Poisson manifold. We denote the Poisson bivector byP ∈ Γ (Λ2TM), {f, g} =
〈P,df ∧ dg〉; in local coordinatesXi onM, P = (1/2)Pij(X)∂i ∧ ∂j ⇒ {Xi,Xj} = Pij,
and

[P,P]Schouten≡ Pij
,sP

ks∂i ∧ ∂j ∧ ∂k = 0, (1)

as a manifestation of the Jacobi identity for the Poisson bracket.
Any morphismφ : E1 → E2 between two vector bundlesπi : Ei → Mi, i = 1,2, may

be expressed in different equivalent ways. One of them is by specifying the induced base
mapφ0 : M1 → M2 and, in addition, by providing a sectionAof the bundleE∗

1 ⊗ φ∗0E2. If
bI, I = 1, . . . , rank(E2), denotes a local basis ofE2 andbI the corresponding induced basis
in the pullback bundleφ∗0E2, and ifE1 = TΣ, thenA = AI ⊗ bI , whereAI ∈ Ω1(Σ) ≡
Γ (T ∗Σ) (possibly also defined locally onΣ only, however).

Later on we will also need the graphφgraof the above mapφ as well as its trivial extension
Eφ,

φgra : E1 → E := E1 � E2, e1 
→ e1 � φ(e1), (2)

Eφ : E → E, Eφ = φgra ◦ p1. (3)

Hereπ : E → M, the exterior sum ofE1 andE2, is a vector bundle overM := M1 ×M2
defined as pr∗1 E1 ⊕ pr∗2 E2, where pri : M → Mi is the projection to theith factor of the
Cartesian product, andp1 is the canonical projection bundle morphismE → E1 covering
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pr1 : M → M1:

E
p1−→ E1

π ↓ ↓ π1

M
pr1−→ M1

(4)

Alternatively, the vector bundle morphismφ induces a mapΦ : Γ
(⊗p

E∗
2

) →
Γ

(⊗pE∗
1

)
. For p = 0 it is given by the pullback of functions,C∞(M2) � f 
→

φ∗0f ∈ C∞(M1), while for p = 1, Φ(u2) for u2 ∈ Γ (E∗
2) is defined by〈Φ(u2), s1〉|x =

〈u2|φ0(x), φ(s1|x)〉∀x ∈ M1 and∀s1 ∈ Γ (E1). In the particular case ofE1 = TΣ mentioned
previously, withbI denoting the local basis inE∗

2 dual tobI , one hasΦ(bI ) = AI . The ex-
tension to arbitraryp is canonical now. Mostly we will use only the restriction of the above
mapΦ to the antisymmetric subspaceΓ (ΛpE∗

2) =: Ωp
E2

(M2) (the space ofE2-forms) only,
which we denote by the same letter.

The above mapΦ can be extended also to allE2-tensors, and we will denote this extension
by

Φ! : Γ

(
p⊗E∗

2

q⊗E2

)
→ Γ

(
p⊗E∗

1

q⊗ (φ0)∗E2

)
, (5)

where on the first factorΦ! acts asΦ above and onE2 it is defined asΓ (E2) � s2 
→ s2 ◦ φ0,
viewed as a section of the pullback bundle (φ0)∗E2. With this map the above sectionA ∈
E∗

1 ⊗ φ∗0E2 is nothing but the image of the canonical identity sectionδ ∈ E∗
2 ⊗ E2, A =

Φ! (δ) (in local termsδ = bI ⊗ bI andΦ! (bI ) ≡ bI ).
In the particular caseE2 = T ∗M andE1 = TΣ (and only in this case!) the mapΦ can

be extended to allE2-tensors also in another way, which we denote by

Φ∗ : Γ

(
p⊗ TM

q⊗ T ∗M
)
→ Γ

(
p+q⊗ T ∗Σ

)
. (6)

Here 1-forms onM, corresponding top = 0, q = 1, are mapped by the pullbackφ∗0 to
1-forms onΣ—and, as before, this map is extended canonically to all possible choices for
p andq.

Such asφ permits the dual formulation in terms ofΦ : Ωp
E2

(M2) → Ω
p
E1

(M1), also the
maps(2) and (3)induce reverse maps:

Φgra : Ωp
E(M) → Ω

p
E1

(M1), EΦ : Ωp
E(M) → Ω

p
E(M). (7)

Note that due to the isomorphism
⊕

p+q=k Ω
p
E1

(M1) ⊗Ω
q
E2

(M2) ∼= Ωk
E(M), where multi-

plication is defined according to (ω1 ⊗ ω2) ∧ (ω′
1 ⊗ ω′

2) = (−1)qp
′
(ω1 ∧ ω′

1) ⊗ (ω2 ∧ ω′
2),

there is a natural bigrading forE-forms; if we want to stress the bigrading, we writeΩ
p,q
E (M),

while k in Ωk
E(M) denotes the total degree, which is the sum of the two individual degrees

onE1 andE2. The above maps(7) are related toΦ in the following way:

Φgra : Ωp,q
E (M) ∼= Ω

p
E1

(M1) ⊗Ω
q
E2

(M2)
id⊗Φ−→ Ω

p
E1

(M1) ⊗Ω
q
E1

(M1)

∧→ Ω
p+q
E1

(M1), (8)
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EΦ : Ωp,q
E (M)

Φgra

−→ Ω
p+q
E1

(M1)
P1−→ Ω

p+q
E1

(M1) ⊗Ω0
E2

(M2) ∼= Ω
p+q,0
E (M), (9)

whereP1 : Ωp
E1

(M1) � ω1 
→ ω1 ⊗ 1 ∈ Ω
p
E1

(M1) ⊗Ω0
E2

(M2) ⊂ Ω
p
E(M) is the map in-

duced by the bundle morphismp1 : E → E1. So,EΦ preserves only the total degree, but
not the bigrading.

By definition,p1 ◦ φgra = idE1, which translates into the dual relationΦgra ◦ P1 = id.
For EΦ = P1 ◦Φgra we then obtainEΦ ◦ P1 = P1, implying thatEΦ is a projector to the

image ofP1 (i.e. onΩ·
E(M) one hasEΦ

2 = EΦ and imEΦ = im P1).
Using the mapΦ∗, we give a concise global definition of the action functional of the

PSM:2

S[φ] =
∫
Σ

Alt Φ∗(δ+ P), (10)

where δ is the canonical identity section in TM⊗ T ∗M and Alt denotes the antisym-
metrization. In local coordinatesXi onM and with the induced local basis∂i ∼ bI and
dXi ∼ bI in TM and T ∗M = E2, respectively, one hasδ = ∂i ⊗ dXi and AltΦ(δ) =
Alt(Ai ⊗ dXi) = Ai ∧ dXi (whereAi ∼ AI , as introduced above, andXi = Xi(x) denotes
the scalar field corresponding to the mapφ0 : Σ → M, just expressed in local coordi-
nates).P, on the other hand, is the Poisson tensor onM, and for the second term simply
Alt Φ∗(P) = Φ(P) = (1/2)PijAi ∧ Aj. Thus in the more familiar and for practical purposes
most useful local description,Stakes the form

S = S[φ0, A] =
∫
Σ

Ai ∧ dXi + 1

2
PijAi ∧ Aj. (11)

For completeness we also mention another possible covariant presentation of the action
functional. For this purpose we first rewriteP as (1/2)〈P, δ ∧ δ〉, then the second term in
(10), which may be also written asΦ! (P), becomes (1/2)〈Φ! (P), A ∧ A〉 with A ∧ A ∈
Ω2(Σ,Λ2φ∗0T

∗M). Moreover, (φ0)∗ : TΣ → TM is a vector bundle morphism covering
φ0. Thus, according to the above discussion, it induces a section ofT ∗Σ ⊗ φ∗0TM, which
we denote suggestively by dφ0. Clearly it can be contracted withA ∈ Γ (T ∗Σ ⊗ φ∗0T

∗M).
In this way we obtain

S =
∫
Σ

〈A ∧ dφ0〉 + 1

2
〈P ◦ φ0, A ∧ A〉. (12)

Concerning the field equations and the symmetries of the PSM action functional,
we let it suffice here to just recall the local basis expressions—anyway, much to fol-
low will be devoted to a more abstract and covariant formulation of precisely these two
issues.

The field equations of the action functional(11)are

δS

δAi

≡ dXi + Pij(X)Aj = 0, (13)

2 In Section 4this formula is rewritten in two further quite similar fashions, cf. Eq.(64), which will be explained
only there to not overload the presentation here.
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δS

δXi
≡ dAi + 1

2P,
kl
i (X)Ak ∧ Al = 0. (14)

The gauge symmetries are generated by

δεX
i = Pjiεj, (15)

δεAi = dεi + Pjk,i Ajεk, (16)

whereε ≡ εidXi ∈ Γ (φ∗0T
∗M) may be chosen arbitrarily. The obvious Diff(Σ) invariance

of the action functionalS, e.g., can be generated by means of(15) and (16)with the choice
εi = 〈v,Ai〉 with v ∈ Γ (TΣ) being the infinitesimal generator of a diffeomorphism in the
above group. For further remarks in the context of symmetries, somewhat complementary
to what will follow in the present paper, we also refer to Section 2.1 of[3].

We now recall the definition of a Lie algebroid. First of all,E = T ∗M,M Poisson, is a
particular example, and many things become more transparent when they are formulated in
this somewhat more general context and language. Moreover, although the action functional
S, as introduced above, is quite particular to morphisms from onlyTΣ → T ∗M, whereΣ
is two-dimensional andM Poisson, the field equations and symmetries generalize easily
to arbitrary Lie algebroid morphismsφ : E1 → E2. Moreover, we believe that the corre-
sponding considerations are of interest in this more general context as well. Finally, we
remark that it is even possible to construct action functionals for this more general setting,
too, but this is not subject of the present paper.

A Lie algebroid over a base manifoldM is a vector bundleEwith a Lie algebra structure
[·, ·] on the space of sectionsΓ (E) together with a bundle mapρ : E → TM, called the
anchor, which by definition governs the following Leibniz rule: for anys, s′ ∈ Γ (E), f ∈
C∞(M),

[s, fs′] = f [s, s′] + ρs(f )s′, (17)

whereρ· denotes the induced map of sections fromΓ (E) to Γ (TM). It is not difficult to
see thatρ· provides a representation of (Γ (E), [·, ·]) in the Lie algebra of vector fields,
i.e. that [ρs, ρs′ ] = ρ[s,s′] . We briefly recall the list of standard examples of Lie algebroids.
Lie algebras,M being a point, or bundles of Lie algebras, forρ ≡ 0. The tangent bundle,
E = TM, ρ = id. And, finally,E = T ∗M,M Poisson, whereρ = P-, ρ(αidXi) = αiP

ij∂j,
and the bracket [df,dg] := d{f, g} between exact 1-forms is extended to all 1-forms by
means of(17).

There is also an equivalent definition of a Lie algebroid (E,M, ρ, [·, ·]) as the differential
graded algebra (Γ (Λ·E∗) ∧ Ed), whereEd is defined by (ω ∈ Γ (ΛpE∗), si ∈ Γ (E))

Edω(s1, . . . , sp+1) =
∑
i

(−1)i+1ρ(si)ω(. . . , ŝi, . . .)

+
∑
i<j

(−1)i+jω([si, sj], . . . , ŝi, . . . , ŝj, . . .), (18)

which is a generalization of the Cartan formula for the exterior derivative in the standard
Lie algebroid TM.
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An anchor map of a Lie algebroidE provides a representation ofΓ (E) in C∞(M). One
can lift this action to a representation inΓ (Λ·E∗). Taking any sectionsof E, we associate
a Lie derivative (E-Lie derivative) ELs alongsby generalization of Cartan’s magic formula

ELs = [Ed, ıs] = Edıs + ıs
Ed, (19)

whereıs denotes contraction withs andEd is defined in(18). It is now straightforward to
prove that indeed one has a representation, i.e. that [ELs,

ELs′ ] = EL[s,s′] holds true.3 (In
general, for operatorsV1,V2 of some fixed degree in a graded vector space, we define the
graded commutator bracket according to [V1,V2] := V1 ◦ V2 − (−1)degV1 degV2V2 ◦ V1. In
the above,Ed, is, andELs are of degree+1,−1, and 0, respectively.)

For later use we will need some of the above formulas in more explicit form. Let (U, {Xi})
be a local coordinate chart,bI be a frame ofEU overU, andbI its dual frame inE∗

U . Then
with ρ(bI ) ≡ ρI =: ρi

I∂i and [bI, bJ ] =: CK
IJbK one finds

EdXi = bIρi
I (X), EdbI = −1

2C
I
JK(X)bJ ∧ bK, (20)

ELsX
i = sIρi

I ,
ELsb

I = ρJ (sI )bJ + CI
JK(X)bJsK. (21)

In the Poisson case,bI ∼ dXi, bI ∼ ∂i, ρ
j
I ∼ Pij, andCI

JK ∼ Pjk
,i.

Some words about conventions may be in place: If there are two Lie algebroids involved,
Ei → Mi, i = 1,2, such as already above in the context of a bundle mapφ : E1 → E2, we
will mostly mark objects of the respective algebroid with the corresponding index. For
example,s2, s

′
2 ∈ Γ (E2) for sections of the target bundle. Similarly, for the respective

Lie algebroid exterior derivatives, we will use the abbreviationsEi d =: di. However, to
simplify notation we will make exceptions from the above rule for what concerns, e.g. local
coordinates and frames:xµ, bα denote coordinates and frame in the sourceM1 andE1,
respectively, whileXi andbI do so for the target. Correspondingly, thenCK

IJ (Cγ

αβ) denote
structure functions inE2(E1), and likewise for connection coefficients, etc. Depending on
the context, furthermore,Xi may just denote coordinates onM2 or, as, e.g. already in(13),
the collection of functions on (parts of)M1 corresponding to the base mapφ0 : M1 → M2;
otherwise we would have to writeΦ(Xi) ≡ (φ0)∗Xi, in the previously introduced notation,
where, moreover,Φ and (φ0)∗ are the canonical restrictions of the respective maps to
functions defined on the neighborhoodU ⊂ M2 on which the coordinatesXi are defined.
Likewise dXi may denote a basis of local 1-forms inT ∗M or its pullback, which more
carefully we would have to write as (φ0)∗ dXi ≡ Φ∗ dXi. On the other hand, for the induced
basis in (φ0)∗T ∗M for clarity we usedXi := Φ! (dXi) ≡ dXi ◦ φ0. In generalization of
the 1-form fieldsAi of the PSM, we have the (locally defined) set ofE1-1-formsAI ≡
AI

α ⊗ bα = Φ(bI ); they combine into (the globally defined)A = Φ! (bI ⊗ bI ) = AI ⊗ bI ∈
Γ (E∗

1 ⊗ φ∗0E2), which in the PSM case becomesA = Ai ⊗ dXi.
Finally we mention that ifEi → Mi, i = 1,2, are two Lie algebroids, then alsoE → M,

whereE ≡ E1 � E2 andM ≡ M1 ×M2 as introduced above, can be endowed canonically
with a Lie algebroid structure (generalizing the direct sum of two Lie algebras). For this
purpose we use the isomorphismΩ·

E(M) ∼= Ω·
E1

(M1) ⊗Ω·
E2

(M2), and defineEd := Ed1 +

3 This is done most easily by noting that the operator [ıs, [ıs′ , Ed]] on Ω·
E(M) is C∞(M)-linear and agrees with

ı[s,s′] , cf. also[16,15].
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Ed2, whereEd1 = d1 ⊗ id and, similarly,Ed2 = (−1)ε1id ⊗ d2, with ε1 being the grading
operator acting as multiplication byp onΩ

p
E1

(M1). By construction, (Edi)2 = 0, and, due

to the grading operatorε1, alsoEd1 andEd2 anticommute, so that indeed (Ed)2 = 0.

3. Morphisms and field equations

Assume thatE1 → M1 andE2 → M2 are Lie algebroids with the anchorsρ1 andρ2,
respectively and thatφ : E1 → E2 is a vector bundle morphism. For the particular case
E1 = TΣ andE2 = T ∗M,M Poisson,φ reproduces the content of the fields in the PSM; it
is worthwhile, however, to discuss the more general situationφ : E1 → E2 (cf. also[28,26]
for further motivation for this perspective). In the beginning of the present section we address
the question, under what conditions we may callφ a morphism of Lie algebroids, as well
as how, in the particular case of the PSM, this is related to its field equations. On our way
we will prove also some helpful reformulations of the notion of Lie algebroid morphisms
in terms of the maps introduced in the previous section.

ForM1 = M2 = {pt} the above Lie algebroids simply become Lie algebras. By defini-
tion,φ : g1 → g2 is a morphism of Lie algebras iff [φ(s1), φ(s′1)] − φ([s1, s

′
1]) = 0∀s1, s

′
1 ∈

g1. But, in general a vector bundle morphismφ : E1 → E2 does not induce a map of sec-
tions of those bundles (except if, say, the induced base mapφ0 : M1 → M2 is a diffeo-
morphism). Instead, as with vector fields and the tangent mapϕ∗ of a mapϕ : M1 → M2
(corresponding to the example of standard Lie algebroidsEi = TMi with φ = ϕ∗), one
may speak of relation of sections only. Sectionssi ∈ Γ (Ei) are calledφ-related, s1 ∼φ s2
iff φ ◦ s1 = s2 ◦ φ0. Following[11] we also say thats1 ∈ Γ (E1) is φ-projectable if it isφ-
related to somes2 ∈ Γ (E2). The most straightforward attempt to generalize the morphism
of Lie algebras would then be

Definition 1. Letφ be a vector bundle morphismφ : E1 → E2 between two Lie algebroids
(Ei,Mi, ρi, [·, ·]i), i = 1,2. We say thatE1 andE2 areφ-related,E1 ∼φ E2 iff

ρ2 ◦ φ = (φ0)∗ ◦ ρ1, (22)

s1
φ∼ s2, s

′
1

φ∼ s′2 ⇒ [s1, s
′
1]1

φ∼ [s2, s
′
2]2 ∀si, s′i ∈ Γ (Ei), (23)

where (φ0)∗ : TM1 → TM2 denotes the push forward of tangent vectors induced byφ0.

In general, however,φ-relation of Lie algebroids is too weak a notion to deserve being
called also a morphism of Lie algebroids. We thus take recourse to a dual perspective, using
the mapΦ introduced in the previous section (in the example of standard Lie algebroids
Ei = TMi andφ = ϕ∗, the mapΦ is just the pull back of differential forms):

Definition 2. A vector bundle morphismφ : E1 → E2 between two Lie algebroids
(Ei,Mi, ρi, [·, ·]i) � (Γ (ΛE∗

i ) ∧ di), i = 1,2, is a morphism of Lie algebroids iff the in-
duced mapΦ : Γ (ΛE∗

2) → Γ (ΛE∗
1) is a chain map:

d1Φ−Φd2 = 0. (24)
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In other words,φ is a morphism iff

Fφ : Ω·
E2

(M2) → Ω·+1
E1

(M1), Fφ := d1Φ−Φd2 (25)

vanishes.
Before continuation, we show thatDefinition 2 indeed serves the purpose of giving a

mathematical meaning to the field equations of the PSM.

Proposition 1. A bundle mapφ betweenTΣ andT ∗M is a solution of the PSM equations
(13)and(14) iff Φ is a morphism of Lie algebroids.

Proof. Let us choose a local chartU ⊂ M supplied with coordinate functions{Xi}, induc-
ing the local frame∂i of TU. Applying dΦ−Φ∂ to Xi and∂i, we immediately obtain the
first and the second field equations,(13) and (14), respectively. Here d is the usual de Rham
operator onΣ and∂ is the Lichnerowicz–Poisson differential acting onΓ (Λ·TM), which
is a particular case of the canonical Lie algebroid differential onT ∗M determined by the
Poisson structureP. Since both the conditions(13), (14) and (24)are local, this completes
the proof. �

In [11], instead of the above, one finds the following definition:

Definition 3. Let E1, E2 be Lie algebroids on basesM1,M2 with anchorsρ1, ρ2. Then
a morphism of Lie algebroidsE1 → E2 is a vector bundle morphismφ : E1 → E2, φ0 :
M1 → M2 such that Eq.(22) holds and such that for arbitrarys1, s

′
1 ∈ Γ (E1) with φ-

decomposition

φ ◦ s1 =
∑

ai(ηi ◦ φ0), φ ◦ s′1 =
∑

a′i(η
′
i ◦ φ0), (26)

we have

φ ◦ [s1, s
′
1] =

∑
aia

′
j([ηi, η

′
j] ◦ φ0) +

∑
ρ1(s1)(a′j)(η

′
j ◦ φ0)

−
∑

ρ1(s′1)(aj)(ηj ◦ φ0). (27)

Here {ηi}, {η′i} are sections ofE2 andai, a
′
i functions overM1. Let us mention thatany

sections ∈ Γ (E1) hassomeφ-decomposition (e.g. choose for{ηi}a (possibly overcomplete)
basis of sections inE2—the definition then may be shown to be also independent of this
choice of basis).

Proposition 2. Definitions 2 and 3are equivalent.

Proof. As seen by a simple straightforward calculation, application of(24) to functions
yields a dual formulation of(22) (just contract the former equation with sections ofE1).

It remains to show equivalence of the second defining property inDefinition 3 to the
application of(24)to sections ofE∗

2. In other words we need to prove that for anyu ∈ Γ (E∗
2)
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ands1, s
′
1 ∈ Γ (E1) with decompositions(26)one has

〈(d1Φ−Φd2)u, s1 ∧ s′1〉 =
〈
u ◦ φ0,

∑
ρ1(s1)(a′j)(η

′
j ◦ φ0)

−
∑

ρ1(s′1)(aj)(ηj ◦ φ0) − φ ◦ [s1, s
′
1]

+
∑

aia
′
j([ηi, η

′
j] ◦ φ0)

〉
. (28)

In fact, using(18), we obtain

〈d1Φ(u), s1 ∧ s′1〉 = ρ1(s1)〈Φu, s′1〉 − ρ1s
′
1)〈Φu, s1〉 − 〈Φu, [s1, s

′
1]〉

= ρ1(s1)
(∑

a′jφ
∗
0〈u, η′j〉

)
− ρ1(s′1)

(∑
ajφ

∗
0〈u, ηj〉

)

−〈u ◦ φ0, φ ◦ [s1, s
′
1]〉. (29)

The Leibniz rule for the anchor map action ofs1, s
′
1 gives

〈d1Φ(u), s1 ∧ s′1〉 =
〈
u ◦ φ0,

∑
ρ1(s1)(a′j)(η

′
j ◦ φ0)

−
∑

ρ1(s′1)(aj)(ηj ◦ φ0) − φ ◦ [s1, s
′
1]

〉

+
∑

a′jρ1(s1)φ∗0〈u, η′j〉 −
∑

a′jρ1(s′1)φ∗0〈u, ηj〉. (30)

On the other hand,

〈Φd2u, s1 ∧ s′1〉 =
∑

aia
′
jφ

∗
0〈d2u, ηi ∧ η′j〉

=
∑

aja
′
jφ

∗
0(ρ2(ηi)〈u, η′j〉 − ρ2(η′j)〈u, ηi〉)

−
〈
u ◦ φ0,

∑
aia

′
j([ηi, η

′
j] ◦ φ0)

〉
. (31)

Eq.(22)implies that∀h ∈ C∞(M2), s ∈ Γ (E1), x ∈ M1, one hasρ1(s)|xφ∗0h = ρ2(φ ◦ sx)h.
Hence, taking into account theφ-decompositions ofsi, s′j, we get

ρ1(s1)φ∗0〈u, η′j〉 =
∑

aiφ
∗
0ρ2(ηi)〈u, η′j〉, (32)

and a likewise formula with primed and unprimed quantities exchanged. Thus all additional
contributions in the difference〈d1Φu, s1 ∧ s2〉 − 〈Φd2u, s1 ∧ s′1〉 vanish, i.e. the last two
terms in(30)cancel against the first two terms in(31). �

FromDefinition 3it is also obvious that for Lie algebras, corresponding toM1 = M2 =
{pt}, the chain property(24) is equivalent toφ being a morphism in the usual sense. Also,
from this version we see that ifφ : E1 → E2 is a morphism of Lie algebroids, thenE1 andE2
areφ-related. Indeed, the condition on the left-hand side of(23) implies aφ-decomposition
(26)with only one term,a = 1 andη = s2 (and likewise for the primed quantity), in which
case Eq.(27) just reduces to the right-hand side of(23).

However, in general the converse conclusion is not true as illustrated, e.g. by the following
example in the context of the PSM (cf. our discussion above and in particularProposition 1):
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Example 1. Let x1, x2 be coordinates on the world-sheetΣ := R
2 and letM := R

4 be
a target manifold supplied with a zero Poisson tensor. Assume thatφ is specified by the
following choice of fields:A := Ai ⊗ dXi with

A1 := dx1, A2 := x2 dx1, A3 := dx2, A4 = x2 dx2

andφ0, in accordance with the first morphism property(22), which is equivalent to the first
set of field equation(13), is chosen to map to a single point inR

4. This provides aφ-relation
of TR

2 andT ∗
R

4, because there is not even a single vector fieldξ on R
2 that—for this

choice ofφ—isφ-related toanysection ofΓ (T ∗
R

4), and thus the condition (ii) inDefinition
1 becomes empty. But this does not satisfy the morphism property(24) sinceAi clearly
does not satisfy also the second set of field equations(14) (which would imply that allAi’s
are closed).

Under suitable further conditions it is nevertheless possible to reverse the above mentioned
implication. In the above example the main problem was that the given vector bundle
morphism excludes the existence ofanyprojectable section.

Proposition 3 (Higgins and Mackenzie[11]). If the sections ofE1 which are projectable
with respect to a given vector bundle morphismφ : E1 → E2 generate all ofΓ (E1), then
φ-relation implies the morphism property. The assumption holds true in particular, if φ is
fiberwise surjective.

Proof. According to the assumption anys1, s
′
1 ∈ Γ (E1) decompose ass1 =

∑
aiξi, s

′
1 =∑

a′iξ
′
i such thatξi, ξ′i areφ-related to someηi, η

′
i ∈ Γ (E2), respectively. Since obviously

(26)holds true, we should prove(27). By φ-relationφ ◦ [ξi, ξ′j] = [ηi, η
′
j] ◦ φ0. Using this

relation in the application ofφ to

[s1, s
′
1] =

∑
aia

′
j([ξi, ξ

′
j] +

∑
ρ1(s1)(a′j)ξ

′
j −

∑
ρ1(s′1)(aj)ξj, (33)

we indeed find(27).
Finally, if φ is fiberwise surjective, there exists an isomorphism betweenE1 and kerφ ⊕

φ∗0E2. Evidently, any section of kerφ is φ-related to the zero section ofE2 and all sections
of φ∗0E2 are generated byφ∗(Γ (E2)); thus all sections of kerφ ⊕ φ∗0E2 ∼= E1 are generated
by projectable sections.�

Let us notice that since the morphism equation(24) and the proof above are local, the
statement ofProposition 3remains unchanged if we replaceM1 with an open neighborhood
of any pointx0 ∈ M1. This argument is used in the next proposition.

Proposition 4. Anyφ-relation with a base map that is a local immersion is a morphism of
Lie algebroids.

Proof. If φ0 : M1 → M2 is a local immersion then for any pointx0 ∈ M1 there exists a
coordinate chart (U,Xi) aroundφ0(x0) and an open neighborhoodV ⊂ M1 of x0 such that
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φ0(V ) ⊂ U is given by the set of equationsX1+dimM1 = · · · = XdimM2 = 0 andφ0 : V →
φ0(V ) is a diffeomorphism.

Now one can show that any section of (E1)|V is projectable with respect to the restriction
of φ on (E1)|V , i.e.φ-related to some section of (E2)|U as a consequence of the following
simple facts:

• The restriction ofφ defines a map of sectionsΓ ((E1)|V ) → Γ ((E2)|φ0(V )).
• Any section of (E2)|φ0(V ) can be extended as a section of (E2)|U . �

The last statement is of particular interest due to

Proposition 5. φ : E1 → E2 is a morphism of Lie algebroids iff its graphφgra : E1 →
E ≡ E1 � E2 is a morphism of Lie algebroids.

Proof. With Ω·
E(M) ∼= Ω·

E1
(M1) ⊗Ω·

E2
(M2),E d = Ed1 + Ed2, and Φgra(ω1 ⊗ ω2) =

ω1 ∧Φ(ω2) for all ωi ∈ Ω
qi
Ei

(Mi) (so thatε1(ω1) = degω1 = q1) one has

(d1Φ
gra−ΦgraEd)(ω1 ⊗ ω2) = (−1)q1ω1 ∧ (d1Φ−Φd2)ω2,

which vanishes identically if and only ifΦ is a chain map. �
Since the base map ofφgra is even an embedding, the general notion of Lie alge-

broid morphism can be reduced to the simplified notion ofφ-relation of Lie algebroids,
E1 ∼φgra

E.
Finally, the chain property(24) may be reformulated also nicely in terms of operators

living in one and the same bundle. Recall thatEΦ andEd both act insideΩ·
E(M) (cf. Eq.

(7) and end of the previous section); whileEΦ is of (total) degree 0,Ed is of degree 1. We
have the following proposition.

Proposition 6. φ : E1 → E2 is a morphism of Lie algebroids iff the induced operatorEΦ

commutes withEd onΩ·
E(M), i.e. iff the operator

EFφ := [Ed, EΦ] (34)

vanishes.

Proof. By definition,EΦ = P1 ◦Φgra. Since evidentlyEd ◦ P1 = P1 ◦ d1 holds true, we
obtain

EdEΦ− EΦEd = P1 ◦ (d1Φ
gra−ΦgraEd),

which concludes the proof due toProposition 5and the fact thatP1 is an injection. �
Maybe some warning is in place. The above notion of a morphism, in any of its formula-
tions, applied to the cotangent bundle of two Poisson manifolds, doesnot coincide with a
Poisson morphism. In contrast, a Poisson map, i.e. a mapφ̂0 : (M1,P1) → (M2,P2) with
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(φ̂0)∗P1|x = P2|φ0(x) ∀x ∈ M1, gives rise only to a bundle morphism̂φ : TM1 → TM2 by
means of the tangent mapφ̂ := (φ̂0)∗. This generalizes in the following way.

Definition 4. Let (Ei, [·, ·], ρi) be Lie algebroids over base manifoldsMi, i = 1,2. We say
that a bundle map̂φ : E∗

1 → E∗
2 is a comorphismif the induced operator̂Φ : Γ (E2) →

Γ (E1) satisfies the following properties:

(φ̂0)∗(ρ2(s2)(f )) = ρ1(Φ̂(s2))((φ̂0)∗(f )) ∀f ∈ C∞(M2),

s2 ∈ Γ (E2)Φ̂([s2, s
′
2]) = [Φ̂(s2), Φ̂(s′2)] ∀s2, s

′
2 ∈ Γ (E2).

In this terminology a Poisson map thus corresponds to a comorphism of the respective
Poisson Lie algebroids,̂Φ then being nothing but the pullback of differential 1-forms.

An algebraic generalization of these notions in terms of pseudoalgebras may be found in
[20], such that a morphism (comorphism) of Lie algebroids corresponds to a comorphism
(morphism) of the related pseudoalgebras, respectively.

We conclude this section with a short remark about covariance of the field equations(13)
and (14). Obviously the total set of field equations must be covariant—they are the Euler
Lagrange equations of a completely covariant action functional, cf., e.g.,(10) or (12), or,
likewise, they can be reformulated frame independently as in(24). On the other hand, the
field equations(14)are not only written in an explicitly covariant form, by themselves they
even are not frame independent. The reason for this is the (kind of) Leibniz rule satisfied
by the operator(25),

Fφ(ω2 ∧ ω′
2) = Fφ(ω2) ∧Φ(ω′

2) + (−1)pΦ(ω2) ∧ Fφ(ω′
2), (35)

which holds for arbitraryω2 ∈ Γ (ΛpE∗
2), ω′

2 ∈ Γ (ΛqE∗
2). Indeed, with the abbreviations4

Fi := Fφ(Xi) = d1X
i − ρi

IA
I, (36)

FI := Fφ(bI ) = d1A
I + 1

2C
I
JKAJ ∧ AK, (37)

the first and second set of field equations areFi = 0 andFI = 0, respectively. Suppose
now we change frame frombI to a new one,̃bI , by means ofbI = BI

J b̃
J . Then, by means

of (35), we findFI = Φ(BI
J )FJ̃ +Φ(BI

J,i)F
i ∧ AJ . This obviously implies that only upon

usage ofFi = 0, which itself clearlyiscovariant (also with respect to change of coordinates
Xi → X̃i), we may concludeFĨ = 0 fromFI = 0.

This may be cured by means of an auxiliary connectionΓ onE2, introducing

FI
(Γ ) := FI + Γ I

iJF
i ∧ AJ. (38)

This option shall be investigated into further depth in a separate paper[17]. In the present
paper we are interested particularly in morphisms,Fi = 0 = FI , in which case covariance
of (37) is of subordinate importance. The issue of covariance will become more important
in the context of the following section, however.

4 For notation and conventions recall end ofSection 2.
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4. Generalized gauge symmetries

We now turn to interpreting and generalizing the gauge symmetries of the PSM. In view
of the generalization(36) and (37)of the field equations(13) and (14), it is suggestive to
replace the gauge symmetries(15) and (16)by

δ0
εX

i = ρi
Iε

I, (39)

δ0
εA

I = d1ε
I + CI

JKAJεK, (40)

without further mention it is assumed furthermore thatδ0
ε obeys an (ungraded) Leibniz rule

(which is used, e.g. when establishing gauge invariance of(11)up to boundary terms).
As we were able to cast(36) and (37)into a more elegant and covariant form, cf.,

e.g.,(34), and prove the equivalence of their vanishing with the morphism property of Lie
algebroids, we may now strive for similar issues in the context of(39) and (40). This indeed
is part of the intention of the present section. However, first we need to notice that in the
context of symmetries the non-covariance of the formulas(39), (40) or (15), (16)is much
more severe than in the case of the field equations, which are not only written in explicitly
covariant form in(13) and (14), while, as a total set, they certainly are covariant. As written,
the symmetries either have only on-shell meaning (when there is an action functional as in
the PSM this is tantamount to having meaning only as quotient of all symmetries modulo,
the so-called trivial ones, cf. also[3]) or they are defined only for trivial or flat bundlesE2
(respectively, for topologically rather trivial Poisson manifolds)!

Let us be more explicit about this. An infinitesimal gauge symmetry such as(39) and
(40) is supposed to be a vector field on the (infinite dimensional) spaceM = {φ : E1 →
E2} ∼= {Φ} of fields and thus, for a fixed elementφ inM, a vectorV ∈ TφM. Note thatM
is a bundle overM0 = {φ0 : M1 → M2}, the space of base maps. The projection ofV to
M0 then gives a vectorV0 ∈ Tφ0M0. Eq. (39) indeed corresponds to a vector onM0, as
may be seen by changing coordinates onM2 (or likewise also local frames inE2). However,
(39) and (40)together donot give a well-defined vector on the total spaceM. Indeed, if
we change frame inE∗

2, b
I = BI

J b̃
J , such thatεI = BI

J (X(x))ε̃J , etc., a straightforward
calculation yields

d1ε
I + CI

JKAJεK = BI
J (d1ε̃

J + C̃J
KLÃ

Kε̃L) + BI
J,id1X

iε̃J + BI
J,iρ̃

i
KÃJ ε̃K

−BI
J,iρ̃

i
KÃKε̃J , (41)

on the other hand, by the Leibniz rule we obtain

δ0
ε (BI

J Ã
J ) = BI

J δ0
εÃ

J + BI
J,iÃ

J δ0
εX

i. (42)

The difference of the right-hand sides of(41) and (42)is

BI
J,iF

iε̃J . (43)

Therefore, in general(39) and (40)do not provide a vector inTφ0M0; it is globally well
defined only on fields satisfyingFi = 0 or whenBI

J can be chosen consistently to beX-
independent. The first option is (part of) the on-shell condition, the second one corresponds
to the existence of a flat connection inE2. In this case(40)depends implicitly on the frame
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and on the flat connection chosen, which is zero in the particular frame chosen, but becomes
non-zero if we change the frame.

At this point let us emphasize thatδε is not a tangent vector field toM if it satisfies
δεA

I = BI
JδεÃ

J (which would correspond to the absence of all three terms in(41)) with
respect to a change of framebI = BI

J b̃
J ; it is an element ofTφM only when it satisfies an

ungraded Leibniz rule, i.e. in particular

δεA
I = BI

JδεÃ
J + BI

J,iÃ
JdεX

I (44)

(which would correspond to the absence of the last and the third to last term in(41), which
together combined into(43)). As a consequence, even if one uses a connection onE2 to
provide a global and frame independent definition of the tangent vectorsδε, the explicit
formula forδεAI will not be covariant (in the usual sense) with respect to capital indices
(containing only covariant derivatives andE2-tensors).5 In contrast,δεXi is covariant with
respect toi, since multiplication by (the pullback of) the Jacobian of a coordinate change
onM2 is in agreement with the Leibniz property ofδε.

For the rest of the section, we will proceed as follows. In view of the above observation,δ0
ε

as defined in(39) and (40)should have a good, more abstracton-shellinterpretation. Indeed,
we will see that it corresponds to an infinitesimal homotopy of Lie algebroid morphisms.
Simultaneously this picture provides an on-shell integration of the infinitesimal symmetries
δ0
ε . Next we want to lift the on-shell symmetry to a well-defined off-shell symmetry. This

is not unique certainly. One option is to do this in such a way that the (infinitesimal) inner
automorphisms ofE1 andE2 are contained as Lie subalgebras. This will turn out to be done
most efficiently in terms ofE-Lie derivatives of the exterior sum Lie algebroidE = E1 � E2.
The second option is to employ a connection onE2, such that for flat connectionsΓ , and
in a frame for whichΓ = 0, one re-obtains the original formulas forδ0

ε . This second option
shall be mentioned at the end of this section peripherally only; for more details we refer to
[17].

Definition 5. LetE1 andE2 be Lie algebroids over smooth manifoldsM1 andM2, respec-
tively. We say that the two morphismsφ, φ′ : E1 → E2 arehomotopiciff there is a morphism
φ̄ from the Lie algebroidĒ := E1 � TI over the manifoldN = M1 × I, I ≡ [0,1], such
that the restriction of̄φ to the boundary componentsM1 × {0} andM1 × {1} coincides with
φ andφ′, respectively.

Proposition 7. Two Lie algebroid morphismsφ and φ′ are homotopic iff they can be
connected by a flow ofδ0· as defined in(39) and (40).

Note that, as outlined above,δ0
ε is well-defined on-shell, i.e. as a vector field on the subset

ofM satisfying the field equationsFi = 0 = FI ; in the above propositionδ0
ε is understood

in this on-shell sense.

5 There is one trivial exception to this statement, namely the case for which the second term in(44) vanishes
identically (for all choices ofBI

J (X)). This happens iffδεXi ≡ 0 for all ε, which, in view of the covariance and
off-shell validity of (39), in turn is tantamount toρ ≡ 0, i.e. this happens iffE2 is a bundle of Lie algebras.



M. Bojowald et al. / Journal of Geometry and Physics 54 (2005) 400–426 417

Proof. Given a local frame{bI} in E2 over a coordinate chart{Xi}, we immediately obtain
the following system of equalities from the chain property ofφ̄:

F̄ i =Ē dXi − ρi
IĀ

I ≡ 0, F̄ I =Ē dĀI + 1
2C

I
JKĀJ ∧ ĀK ≡ 0, (45)

where the structure functionsCI
JK andρi

I depend onX(x), x ∈ M1, but not ont. On the

other hand, by definition,̄E = E1 � TI and ĒdU = d1 + dt ∧ ∂t ; correspondingly,̄AI =
AI + ĀI

t dt, withAI ≡ AI (t) ≡ AI
αb

α being (local)t-dependentE1-1-forms. Adapting(45)
to this splitting, and renaminḡAI

t to εI , we obtain

F̄ i = Fi(t) + dt(∂tX
i − ρi

Iε
I
t ), (46)

F̄ I = FI (t) + dt ∧ (∂tA
I − d1ε

I + CI
JKεJ ĀK), (47)

whereFi andFI are of the form(36) and (37)and ∂tA
I ≡ (∂tĀI

α)bα. This proves that
F̄ i = 0 = F̄ I iff for any t one hasFi = 0 = FI and∂tXk = de0

εX
k, ∂tA

K = de0
εA

K. �
If Mi are manifolds with boundary one has to take care about boundary conditions. In

particular, the space of morphisms fromTI to an arbitrary Lie algebroidEover a manifoldM
modulo homotopies (with fixed boundary contribution) gives thefundamentalorWeinstein’s
groupoidof E, cf. [5]. Thus, the on-shell part of gauge symmetries(39) and (40)is well
motivated now. It corresponds to the infinitesimal flow of a homotopy of Lie algebroid
morphisms. In its spirit this observation is related also to[24].6

We now turn to a possible off-shell definition of the gauge symmetries without the
introduction of any further structures such as a connection onE2, employed in an alternative
approach in[17]. Concretely this means that we want to extend(39) and (40)to a differential
δε, satisfying(44), where forFi = 0 = FI the gauge transformationδε reduces toδ0

ε—and
we want to relate this differential on field space to a differential operator on or between
finite-dimensional bundles, in analogy of what we did with the field equations.

Definition 6. We call an operatorV : Ω·
E2

(M2) → Ω
·+degV
E1

(M1) a Φ-Leibnizoperator, if
it satisfies∀ω,ω′ ∈ Ω·

E1
(M1) (ω homogeneous)

V(ω ∧ ω′) = V(ω) ∧Φ(ω′) + (−1)degVdegωΦ(ω) ∧ V(ω′), (48)

and likewise an operatorEV in Ω·
E(M) (of fixed degree)EΦ-Leibnizif it satisfies the above

equation withV andΦ replaced byEV andEΦ, respectively.

An example for a degree 1Φ-Leibniz operator is provided byFφ, cf. Eq. (35); likewise
EFφ, defined in (34), isEΦ-Leibniz. More generally, obviously any consecutive application
(in both possible orders) of a (standard) Leibniz operator withΦ (EΦ) gives aΦ-Leibniz
(EΦ-Leibniz) operator.

Definition 7. We call δΦ : Ω·
E2

(M2) → Ω·
E1

(M1) an infinitesimal gauge symmetry, if
it is a degree zeroΦ-Leibniz operator satisfyingd1δΦ ≈ δΦd2, where≈ denotes an on-

6 We are grateful to the referee for pointing out this to us.
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shell equality (i.e. it has to be an equality for allΦ with Fφ = 0). Likewise a degree zero
EΦ-Leibniz operatorEδΦ is an infinitesimal gauge symmetry if it satisfies

[EδΦ, Ed] ≈ 0 ⇔ [EδΦ, Ed]|φ:[EΦ,Ed]=0 = 0 (49)

and imEδΦ ⊂ im P1, EδΦ ◦ P1 = 0.

This is motivated as follows:δΦ ∼ dΦt/dt|t=0 for some family ofΦ’s parameterized
by t. Correspondingly, sinceΦ is of degree zero, alsoδΦ is, and functoriality ofΦ,
Φ(ω ∧ ω′) = Φ(ω) ∧Φ(ω′), results in theΦ-Leibniz property. Finally,Φt satisfying the
field equations implies thatδΦ does so on use of the field equation forΦ ∼ Φt=0. All this
applies analogously toEδΦ, where, however, in addition we need to take care of the fact
thatEΦ is not an arbitrary operator inΩ·

E(M), but restricted as specified in(9) and the text
thereafter.

One of the main features of a gauge symmetry is that it maps solutions of field equa-
tions into solutions. Here, the solutions have the meaning of a morphism (of Lie al-
gebroids)φ : E1 → E2. To construct gauge symmetries we may thus proceed as fol-
lows. Let the gauge transformed morphismφ̃ be given byφ̃ := (a1)−1 ◦ φ ◦ a2, where
ai ∈ Aut(Ei), i = 1,2, the respective group of automorphisms ofEi. This defines a right
action of Aut(E1) × Aut(E2) onM = {φ}, which on the level of Lie algebras provides a
homomorphismAut(E1) ⊕ Aut(E2) → Γ (TM).

A subgroup of the automorphism group of a Lie algebraEi
∼= gi is the group of inner

automorphisms, given by the adjoint action of the Lie groupGi which integratesgi; in-
finitesimally, this is just the regular representation of the Lie algebragi, i.e. the action of
gi onto itself given by multiplication in the Lie algebra,vi 
→ [vi, ·] (a homomorphism of
gi → Aut(gi)). Although not every Lie algebroid has a (sufficiently smooth) Lie groupoid
integrating it (cf.[7] for the necessary and sufficient conditions), we still may generalize the
infinitesimal picture to the setting of Lie algebroids. Given a sectionsi ∈ Γ (Ei), we may
regardEiLsi as a vector field onEi, which due toEiLsi (s

′
i) = [si, s′i] and the Jacobi property

of the Lie algebroid bracket, is an infinitesimal automorphism ofEi.
ThatEiLsi indeed can be regarded as a vector field onEi may be seen as follows:C∞(Mi)

andΩ1
Ei

(Mi) are fiberwise constant and bilinear functions onEi, respectively. Together they
generate all ofC∞(Ei). Local coordinatesX onMi and a local coframebI provide a local
coordinate system onEi. Applying a vector field to local coordinates gives its components
in this coordinate system; these components may be easily extracted from Eq.(21), showing
that they are linear in the fiber coordinates. TheEi-Lie derivativeEiLsi provides a uniquely
defined lift ofρ(si) ∈ Γ (TMi) to Γ (T (Ei)); in contrast to the lift given by a contravariant
connection this lift is notC∞-linear insi, certainly.

Proposition 8. For arbitrary sectionssi ∈ Γ (Ei), i = 1,2,

δΦ := Φ ◦ E2Ls2 − E1Ls1 ◦Φ (50)

is an infinitesimal gauge symmetry. For anyΦ ∈M, its action on a local coordinate system
Xi, bI on E2 defines a Leibniz operatorδε (an element inΓ (TφM)), which agrees with
δ0
ε given in(39) and (40)on-shell, whereε = Φ! (s2) − ιsa1A (andA ≡ Φ! (δ) = AI ⊗ bI ).
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Moreover, the commutator of two such infinitesimal gauge transformations is again of the
same form, [δε, δε′ ] = δε′′ , whereε′′ results froms′′1 = [s1, s

′
1] ands′′2 = [s2, s

′
2].

The statement in this proposition may be simplified by saying that there exists ahomomor-
phismΓ (E1) ⊕ Γ (E2) → Γ (TφM), δ(s1,s2)Φ 
→ δε; however, we refrained from doing so,
since, at least at this point, we did not want to go into the details of defining properly the
infinite-dimensional tangent vector bundleTM (while still we will come back to this per-
spective in more detail below). Let us remark already at this point, moreover, that the set of
ε’s that one may obtain in this fashion is too restrictive, yet. Assume, e.g. thatφ corresponds
to AI = 0 andXi(x) = const. Then anyε of the above form is necessarily constant, while
it need not be so in(39) and (40), whereε ∈ Γ (M1, φ

∗
0E2) arbitrary.

Proof. First it is easy to see that(50)provides an infinitesimal gauge symmetry in agreement
with Definition 7. As a composition of Leibniz operators withΦ it is Φ-Leibniz, and since
EiL-Lie derivatives commute with the respective differentialdi, d1Φ ≈ Φd2 is seen to result
in d1δΦ ≈ δΦd2.

To determine the desired map (s1, s2) ∈ Γ (E1) ⊕ Γ (E2) to ε ∈ Γ (M1, φ
∗
0E2), we may

use Cartan’s magic formula(19) to rewriteδΦ = δ(s1,s2)Φ according to

δ(s1,s2)Φ = ΦE2Ls2 − E1Ls1Φ = δ0
(s1,s2)Φ− (Fφιs2 + ιs1Fφ), (51)

where

δ0
(s1,s2)Φ ≡ d1(Φιs2 − ιs1Φ) + (Φιs2 − ιs1Φ)d2. (52)

While the last two terms in(51) vanish on-shell obviously, it is easy to verify thatδ0
(s1,s2)

acting onXi andbI agrees withδ0
ε in (39) and (40)with the parameterε as given above.

Finally, since actions coming from the right and left commute, it is obvious that [δε, δε′ ] (with
ε andε′ of the given form) when applied toAI andφ∗0X

i is tantamount to the application
of Φ ◦ [E2Ls2,

E2Ls′2] − [E1Ls1,
E1Ls′1] ◦Φ to bI andXi, respectively. The statement now

follows sinceEi-Lie derivatives are a representation ofΓ (Ei). �

Note that in contrast toδ0
ε , the operatorδ0

(s1,s2)Φ in Eq.(52) is defined frame independently.
However, now it is not aΦ-Leibniz operator (only on-shell it is). We remark in parenthesis
that one may also generalize the operator in Eq.(52)to the one defined for arbitrary sections
ε ∈ Γ (M1, φ

∗
0E2): δ0

εΦ := d1iε + iεd2 with the operatoriε being defined by means of

iε(fb
I1 ∧ · · · ∧ bIk ) :=

k∑
j=1

(−1)j+1εIjΦ(fbI1 ∧ · · · ∧ b̂Ij ∧ · · · ∧ bIk ). (53)

But such somewhat artificial constructions do not seem very promising. Instead, the right
step is to take recourse to the exterior sum bundleE = E1 � E2. This has the effect that at
the end of the sectionΦ!s2|x = s2(X(x)), x ∈ M1, of the previous proposition is replaced
by a likewise section that depends on both variables,X(x) andx, independently.
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Theorem 1. Any sectionε ∈ Γ (E)which is projectable to a section ofE1 (p1-projectable)
defines an infinitesimal gauge symmetry by means of

EδεΦ := [EΦ, ELε], (54)

and the commutator of two such gauge transformations forε, ε′ is the gauge transformation
associated to[ε, ε′] ∈ Γ (E). In particular, for “vertical” sectionsε ∈ Γ (pr∗2 E2) ⊂ Γ (E)
its action on local fieldsXi,AI is given by

δεX
i = δ0

εX
i, δεA

I = δ0
εA

I − ε,i F
i, (55)

whereδ0 was defined inEqs.(39) and (40)andFi ≈ 0 in Eq.(36).

Proof. Obviously EδεΦ is EΦ-Leibniz, and it obeys Eq.(49) sinceEd commutes with
anyE-Lie derivative and on-shell (by definition) also withEΦ. Thus it remains to check
the final two restrictions on an infinitesimal gauge transformation specified inDefinition
7. It is these conditions that make the restriction top1-projectability (as defined in the
beginning ofSection 3, where the bundle mapφ is replaced byp1 : E → E1, cf. diagram
1) of ε ∈ Γ (E) necessary. To see this we first splitε according toE = pr∗1 E1 ⊕ pr∗2 E2 into
ε = ε1 + ε2 and use linearity inε. Due to [EΦ, ELe2] = EΦELe2, the image ofEδε2Φ lies
trivially in im P1 = im EΦ, and also obviously it acts trivially onP1(ω1) = ω1 ⊗ 1 for all
ω1 ∈ Ω·

E1(M1). To ensure that alsoEδε1Φ kills all ω1 ⊗ 1, we introduced the commutator
of ELε1 with EΦ, the latter operator acting as the identity on the image ofP1. However, in
this case both conditions are satisfied if and only ifε1 depends onx ∈ M1 only, but not
also onX ∈ M2 (consider, e.g.ELε1

EΦ = ıε1dEΦ+ · · ·); more abstractly this means thatε

is p1-projectable, the correspondingE-Lie derivative generating only automorphisms ofE
that are preserving fibers overM1.

Two successive gauge transformations with parameterε andε′ are characterized by the
operator [[EΦ, ELε], ELε′ ].7 Subtracting from this the corresponding operator withε andε′
exchanged and using the Jacobi condition for the (graded) commutator bracket, we obtain
[EΦ, [ELε,

ELε′ ]] = [EΦ, EL[ε,ε′] ], a gauge transformation with parameter [ε, ε′].
To relate the gauge transformations above to explicit transformations acting on the fields,

we proceed similarly to before (cf. Eqs.(51) and (52)), where now the splitting becomes a
bit more elegant:

EδεΦ = [EΦ, [Ed, ıε]] = Eδ0
εΦ− [EFφ, ıε], (56)

Eδ0
εΦ ≡ [Ed, [EΦ, ıε]] , (57)

where we made use of the (graded) Jacobi property and theDefinition (34)for EFφ. Upon
action onXi, bI (or, more generally, the image ofP2 : Ω·

E2(M2) → Ω·
E(M))—and for

ε = s1 + s2—the operatorEδ0
εΦ is identified easily with the one in(52); for generalp1-

projectableε it just provides formulas(39) and (40). The on-shell vanishing contributions,

7 That the successive application of a vector field in field spaceM has again such a simple operator-description
(being a second order differential operator onM, it is now no moreEΦ-Leibniz, certainly, but satisfies a similar
higher analog of this property), is also a benefit of the present approach using operators onΩ·

E(M),E = E1 � E2.
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necessary to render the gauge transformation globally defined and Leibniz, are now easily
calculated to be

[EFφ, ıε]X
i = ıε1F

i, (58)

[EFφ, ıε]b
I = −εI2,i F

i + ıε1F
I. (59)

Note that here we used thatEFφ(εI2) contributes only by its derivative with respect toX,
but not also with respect tox; the latter terms cancel in the commutator(34). Eq.(55)now
follows by specialization toε = ε2. �

Given sectionssi ∈ Γ (Ei), i = 1,2, there is a natural inclusion as sections of the exterior
sumEof E1 andE2. With ε := s1 + s2 it is easy to see that the action ofEδεΦ onXi andbI

precisely reduces toδΦ as given in(50). The extension of the present approach is that now
s2 may effectively depend also onx (and that due to using the graph both, the action from
the left and the action from the right inProposition 8now come from the right); due to this
x-dependence ofε2 (while ε1 is still not permitted to depend onX), the total action is no
more a direct sum ofΓ (E1) with Γ (E2) as inProposition 8, but a semidirect sum, spanned
by the two Lie subalgebras generated byε1 andε2, respectively.

It is needless to say that an explicit verification of the closure of the symmetries(55)(or
even as the one withε = ε1 + ε2, cf. Eqs.(58) and (59)) would be a formidable task. This
now was reduced to a simple line only. We may even use the above approach to simplify
the likewise calculation of the commutator of the initial symmetries (say in a flat bundle or
used in one particular coordinate patch):

Corollary 1. The commutator of two symmetries(39) and (40)corresponding toε, ε′ ∈
Γ (φ∗0E2) is

[δ0
ε , δ

0
ε′ ]X

i = δ0
[ε,ε′]X

i, [δ0
ε , δ

0
ε′ ]A

I = δ0
[ε,ε′]A

I − CI
JK,iF

iεJε′K, (60)

where[ε, ε′]I := φ∗0(CI
JK)εJε′K.

Proof. Any section ofΓ (φ∗0E2) can be regarded as the restriction of some section in
Γ (M,pr∗2 E2) to the graph ofφ0 : M1 → M2 insideM. Notice that this choice is not unique,
certainly; given a flat connection onE2, or in a particular local framebI (which underlies the
definition ofδ0!), we can choose this extension to be constant alongM1-fibers or independent
ofX. We denote these extensions again by the same letters. Note that the bracket inE induces
the bracket as specified above when restricted to theφ

gra
0 (M1) ⊂ M; however, the bracket

[ε, ε′] ⊂ Γ (M,pr∗2 E2) is in generalnotconstant alongM1-fibers; in general it depends on
Xdue to theX-dependence of the structure functionsCI

JK. By use of Eq.(55)we thus obtain
immediately

[δ0
ε , δ

0
ε′ ]X

i = [δε, δε′ ]X
i = δ[ε,ε′]X

i = δ0
[ε,ε′]X

i, (61)

[δ0
ε , δ

0
ε′ ]A

I = [δε, δε′ ]A
I = δ[ε,ε′]A

I = δ0
[ε,ε′]A

I − CI
JK,iF

iεJεK. � (62)
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In the particular case of the PSM this reproduces the well-known contribution rendering
the algebra to be an “open” algebra. We now see that this may be avoided by the additional
contribution in(55)at the cost of keeping track of theX(x) dependence ofε, which, however,
anyway cannot be avoided in the case of a general, non-flat bundleE2.

Summing up, we see that the gauge symmetries(55) are well-defined off-shell and
globally. They are one possible off-shell extension of the always defined on-shell version,
recognized above as a homotopy. Another extension is provided by a connection onE2. In
rather explicit terms this takes the form (besides the obviousδ

(Γ )
ε Xi = δεX

i):

δ(Γ )
ε AI = δ0

εA
I + Γ I

iJF
iεJ . (63)

Let us remark that similar to our considerations about homotopy—but without requiringF

to vanish—it is possible to view these transformations as the components of the covariant
curvaturesFi andFI

(Γ ) in a (1+ dim(M1))-dimensional space–time, cf. Eq.(38). For a
more detailed and coordinate independent explanation of this alternative we refer to[17].

For both off-shell extensions it is clear by construction that they map solutions to the
field equations into other solutions. However, it is not clear that, when specialized to the
PSM, they would leave invariant the action functional (since then the invariance needs to
hold off-shell). In fact, if, e.g. one wants to check invariance of the PSM action(11) with
respect to(63), specialized to the Poisson case, one finds invariance for allεi = εi(x,X(x))
if and only if the connectionΓ is torsion-free.

We now want to discuss the same issue for the case of(55), also in a more coordinate
independent way. For this purpose we return to(10), rewriting it, however, in a way more
suitable to the graph mapφgra (we prefer to useφgra here instead ofEφ, since for an action
functional we need a volume form onM1, not a form on all ofM = M1 ×M2). We first
remark that the joint map Alt◦Φ∗ can be obtained also as the dual map toφ̃ := φ ⊕ (φ0)∗ :
TM1 → T ∗M2 ⊕ TM2. Indeed, the induced map̃Φ then just mapsΓ (Λ·(TM2)) ⊗Ω·(M2)
to forms overM1 andΦ̃ = AltΦ∗. Next, we may repeat the steps above for the mapφgra

instead ofφ by replacing the target Lie algebroid in the mapφ : E1 → E2 by E = E1 �
E2. So, ˜φgra = φgra⊕ (φgra

0 )∗ : TM1 → E⊕ TM and ˜Φgra acts fromΓ (Λ·(E⊕ TM)∗) ∼=
Ω·

E(M) ⊗Ω·(M) to Ω·(M1). In this way we obtain

S[φ] =
∫
Σ

Φ̃(δ+ P) =
∫
Σ

˜Φgra(δ+ P). (64)

To determine the variation of ˜Φgra with respect to a gauge transformation, we first need
to extend theE-Lie derivativeEL defined onE to E⊕ TM (which is not a Lie algebroid
itself in general), i.e. to definẽELε on elements ofΩ·

E(M) ⊗Ω·(M) for anyε ∈ Γ (E): let
ẼLε restrict toELε onΩ·

E(M) and act asLρ(ε) onΩ·(M); this gives a well-defined action
on the tensor product since the two actions agree on functions. Then for any projectable
sectionε ∈ Γ (E) one hasδε( ˜Φgra) = ˜ΦgraELε − L(p1)∗(ε) ˜Φgra, where (p1)∗(ε) ∈ Γ (TM1)
is the projection ofε to E1 = TM1, andL denotes the ordinary Lie derivative. The second
contribution inδε( ˜Φgra) takes care of the fact that one respects the graph property. Now we
are ready to state the following proposition.
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Proposition 9. The PSM action(10) or (64) is invariant with respect to the gauge trans-
formations(55), if the projectable sectionε ∈ Γ (E) ∼= Ω1(M2) satisfies

(P- ⊗ id)(d2ε) = 0, (65)

where d2 is the de Rham operator overM2 (extended trivially toM = M1 ×
M2).

Proof. In this situation we now have the identifications:E1 = TM1, E2 = T ∗M2, E =
TM1 � T ∗M2, andΩm

E (M) = ⊕p+q=mΩp(M1) � Γ (ΛqTM2). Thus,d1 coincides with the
de Rham operator onM1. HereP ∈ Γ (Λ2TM2) andδ ∈ Γ (TM2) ⊗Ω1(M2) are sections
of Ω·

E(M) ⊗Ω·(M) living only over M2. Since
∫
M1

Lξ equals zero for any vector field
ξ ∈ Γ (TM1) (taking into account thatLξ(·) is always exact when acting on a form of
highest degree), it is sufficient to check the statement for an arbitrary “vertical” section
ε ∈ Γ (pr∗2 E2) (whose projection to TM1 vanishes). One can easily calculate that

ELε(δ) = d1εi ⊗ dXi+Pji∂i ⊗ d1εj + (εj,i−εi,j)P
jk∂k ⊗ dXi ∈ Ω1

E(M) ⊗Ω1(M),

(66)

ELε(P) = Pjid1εj ⊗ ∂i + 1
2(εj,i − εi,j)PkiPlj∂k ∧ ∂l ∈ Ω2

E(M), (67)

which implies that the corresponding variation of the PSM action in the form(10)equals

ELεSPSM =
∫
M1

d1εi ∧ dXi + (εj,i − εi,j)P
jkAk ⊗ dXi

+ 1

2
(εj,i − εi,j)P

kiPljAk ∧ Al. (68)

Clearly, the expression(68) vanishes if∂M1 = ∅ and the required condition(65) holds,
which implies that (εj,i − εi,j)Pjk∂k ≡ 0. �

In the remainder we briefly compare with another point of view on gauge transformations,
viewed as an action of a certain infinite-dimensional Lie algebroid living on the space of
base maps, cf.[19]. Let Ei be Lie algebroids overMi, i = 1,2. Then there is a vector
bundleE over the spaceM0 of smooth mapsφ0 acting fromM1 to M2, defined such that
the infinite-dimensional fiberEφ0 at any pointφ0 is Γ (M1, φ

∗
0E2).

One has a natural map IndE acting from sections of pr∗2 E2 overM, as used before, to sec-
tions ofE overM: any sections ∈ Γ (M,pr∗2 E2) gives a section ofE by the maps 
→ IndE

s ,
such that IndEs (φ0) := (φgra

0 )∗s ∈ Γ (M1, φ
∗
0E2). The map IndE is an embedding; moreover,

the space of all sectionsΓ (M0, E) is generated by IndEs , s ∈ Γ (M,pr∗2 E2) over an appropri-
ate algebra of “smooth” functions onM0. For example, ifE2 = TM2 then the corresponding
bundle overM0 can be thought of asTM0. Let us notice thatTM0 is also a Lie algebroid,
such that the map IndT : Γ (M,pr∗2 TM2) → Γ (M0, TM0) respects the Lie brackets. We
can easily extend this fact for a generalE→M0 obtained as above. For this purpose we
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introduce an anchor mapEρ : E→ TM0 such that the following diagram is commutative:

Γ (M,pr∗2 E2)
IndE

−→ Γ (M0, E)

ρ ↓ Eρ ↓
Γ (M,pr∗2 TM2)

IndT

−→ Γ (M0, TM0),

(69)

Now the Lie bracket on the image ofΓ (M,pr∗2 E2) can be extended to the space of all
sections ofΓ (M0, E) by which it becomes a Lie algebroid bracket.

As an example, considerM2 = pt, E2 a Lie algebrag with trivial anchor mapρ ≡ 0.
ThenM0 consists of only one element, andE = C∞(M1, g) is an infinite-dimensional Lie
algebra of “multiloops”.

In the language of Poisson sigma models, or more generally in the setting ofTheorem 1,
δε defines a gauge transformation for any sectionε ∈ Γ (M0, E). The previous discussion,
however, only led to an action ofΓ (E) on base mapsφ0 : M1 → M2 via the vector fieldEρ(ε)
onM0. More generally, all vector fieldsv1 ∈ Γ (TM1) andv2 ∈ Γ (TM2) define sections
v̄1 andv̄2 of Γ (M0) which at a pointφ0 ∈M0 take the value

v̄1(φ0)(x) := dφ0 ◦ v1(x) (70)

and

v̄2(φ0)(x) := v2 ◦ φ0(x), (71)

respectively. Here, we useTφ0M0 ∼= Γ (M1, φ
∗
0TM2) such that a vector field onM0 is

defined by giving its valuev(φ0)(x) ∈ φ∗0TM2 in a mapφ0 and a pointx ∈ M1. Both vector
fields can be seen to generate left and right compositions of diffeomorphisms onM1 and
M2, respectively, with maps inM0. As such, those vector fields always commute with each
other. Sections ofE1 andE2 then define vector fields onM0 throughρ1(ε1) ∈ Γ (TM1)
andρ2(ε2) ∈ Γ (TM2).

This construction is clearly not general enough for our purposes. For gauge transforma-
tions we need vector fields which act on the set of bundle mapsE1 → E2 (i.e. “classical
fields”) denoted asM. This spaceM is a bundle overM0 with fiber over a pointφ0 ∈M0
equal toΩ1

E1
(M1, φ

∗
0E2).

Vector fields onM suitable for gauge transformations can advantageously be defined
in the framework of infinite-dimensional super-geometry (however, an advantage of our
independent construction is that we avoid infinite-dimensional supercomplications). A vec-
tor bundleE → M can be thought of as aZ-graded manifold, denoted asE[1], with the
parity of the fibers defined to be odd. The algebra of smooth functionsC∞(E[1]) on E[1]
is naturally isomorphic toΓ (M,Λ·E∗), and any bundle mapE1 → E2 between two vector
bundles becomes a degree preserving mapE1[1] → E2[1]. For any Lie algebroidE → M

the canonical differentialEd defines a (super-)vector field of degree 1 tangent toE[1], en-
dowing E[1] with a Q-structure. (AZ-graded manifold endowed with an odd nilpotent
vector field is called aQ-manifold[1].) Using this formalism, we can reformulate the chain
property(24): a Lie algebroid morphism is a mapφ : E1[1] → E2[1] of degree zero, such
thatφ∗(d1) = d2.
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Denote the space of all graded mapsE1[1] → E2[1] asMZ (containingM as the zero
degree part). Analogous to the previous construction(70), the vector fieldsd1 andd2 on
E1[1] andE2[1] naturally generate commuting vector fieldsδ1 andδ2 onMZ, respectively
(corresponding to left and right compositions of morphisms). Sinced1 andd2 are odd and
nilpotent, so areδ1 andδ2. The difference de := de1 − de2 is again a nilpotent vector field
of degree 1. Moreover, de vanishes on the set of maps which preserve theQ-structures (in
particular, on the set of Lie algebroid morphisms).

A Lie algebroidE can be identified with the tangent bundle TE[1], where the action of
a vector field on functionsC∞(E[1]) ∼= Γ (M,Λ·E∗) is obtained by contraction betweenE
andE∗. If we have a sectionε ∈ Γ (M0, E) taking values inE2, we obtain a vector field̄ε
onM. UsingTφM ∼= Γ (E1, φ

∗TE2), the vector field̄ε ∈ Γ (TM) is defined by

ε̄(φ)(x) := εφ0(π1(x)) ◦ φ(x)

for x ∈ E1 and withπ1 : E1 → M1. Using the super structure ofMZ, ε̄ is a vector field
of degree−1. A straightforward computation shows that the supercommutator betweenδ

and the contraction withε is a degree preserving vector field (therefore it is tangent to the
subspaceM). This formula for a generalized gauge flow expressed as a supercommutator
is an analog of Cartan’s magic formula(19), which now holds in the context of an infinite-
dimensional geometry of graded maps. One can use this infinitesimal transformation to
generalize the gauge transformation(55) to sectionsε which not only depend onX ∈ M2,
but also depend on the mapφ0 nontrivially. In particular,ε might be a functional determined
by higher jets of a base mapM1 → M2.8 In a similar way, we can express sections of
ε1 ∈ Γ (E1) as vector fields onM:

ε̄1(φ)(x) := φ ◦ ε1(π1(x)).

Note that, unlike the vector fields defined in(70), vector fields obtained in this way
from ε1 ∈ Γ (E1) and ε ∈ Γ (M0, E) do not commute in general sinceε also depends
onM1.
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